2,803 research outputs found

    Bilateral Anterior Shoulder Dislocation

    Get PDF
    Introduction: Unilateral anterior shoulder dislocation is one of the most common problems encountered in orthopedic practice. However, simultaneous bilateral anterior dislocation of the shoulders is quite rare. Case Presentation: We report a case of a 75-year-old woman presented with simultaneous bilateral anterior shoulder dislocation following a trauma, complicated with a traction injury to the posterior cord of the brachial plexus. Conclusions: Bilateral anterior shoulder dislocation is very rare. The excessive traction force during closed reduction may lead to nerve palsy. Clear documentation of neurovascular status and adequate imaging before and after a reduction should be performed

    Cyclin F Is Degraded during G2-M by Mechanisms Fundamentally Different from Other Cyclins

    Get PDF
    Cyclin F, a cyclin that can form SCF complexes and bind to cyclin B, oscillates in the cell cycle with a pattern similar to cyclin A and cyclin B. Ectopic expression of cyclin F arrests the cell cycle in G2/M. How the level of cyclin F is regulated during the cell cycle is completely obscure. Here we show that, similar to cyclin A, cyclin F is degraded when the spindle assembly checkpoint is activated and accumulates when the DNA damage checkpoint is activated. Cyclin F is a very unstable protein throughout much of the cell cycle. Unlike other cyclins, degradation of cyclin F is independent of ubiquitination and proteasome-mediated pathways. Interestingly, proteolysis of cyclin F is likely to involve metalloproteases. Rapid destruction of cyclin F does not require the N-terminal F-box motif but requires the COOH-terminal PEST sequences. The PEST region alone is sufficient to interfere with the degradation of cyclin F and confer instability when fused to cyclin A. These data show that although cyclin F is degraded at similar time as the mitotic cyclins, the underlying mechanisms are entirely distinct

    Effective algebraic degeneracy

    Full text link
    We prove that any nonconstant entire holomorphic curve from the complex line C into a projective algebraic hypersurface X = X^n in P^{n+1}(C) of arbitrary dimension n (at least 2) must be algebraically degenerate provided X is generic if its degree d = deg(X) satisfies the effective lower bound: d larger than or equal to n^{{(n+1)}^{n+5}}

    Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons

    Get PDF
    Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration

    A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design

    Get PDF
    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort

    Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles

    Full text link
    The construction of sections of bundles with prescribed jet values plays a fundamental role in problems of algebraic and complex geometry. When the jet values are prescribed on a positive dimensional subvariety, it is handled by theorems of Ohsawa-Takegoshi type which give extension of line bundle valued square-integrable top-degree holomorphic forms from the fiber at the origin of a family of complex manifolds over the open unit 1-disk when the curvature of the metric of line bundle is semipositive. We prove here an extension result when the curvature of the line bundle is only semipositive on each fiber with negativity on the total space assumed bounded from below and the connection of the metric locally bounded, if a square-integrable extension is known to be possible over a double point at the origin. It is a Hensel-lemma-type result analogous to Artin's application of the generalized implicit function theorem to the theory of obstruction in deformation theory. The motivation is the need in the abundance conjecture to construct pluricanonical sections from flatly twisted pluricanonical sections. We also give here a new approach to the original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi to a simple application of the standard method of constructing holomorphic functions by solving the d-bar equation with cut-off functions and additional blowup weight functions

    On the cohomology of pseudoeffective line bundles

    Full text link
    The goal of this survey is to present various results concerning the cohomology of pseudoeffective line bundles on compact K{\"a}hler manifolds, and related properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in the case where the curvature is merely semipositive in the sense of currents, and the base manifold is not necessarily projective. In this situation, one can still obtain interesting information on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained a general K{\"a}hler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1,1)-currents, based on the use of Bergman kernels, and the related intersection theory of currents. Another important ingredient is the recent proof by Guan and Zhou of the strong openness conjecture. As an application, we discuss a structure theorem for compact K{\"a}hler threefolds without nontrivial subvarieties, following a joint work with F.Campana and M.Verbitsky. We hope that these notes will serve as a useful guide to the more detailed and more technical papers in the literature; in some cases, we provide here substantially simplified proofs and unifying viewpoints.Comment: 39 pages. This survey is a written account of a lecture given at the Abel Symposium, Trondheim, July 201

    Fermionic Modular Categories and the 16-fold Way

    Get PDF
    We study spin and super-modular categories systematically as inspired by fermionic topological phases of matter, which are always fermion parity enriched and modelled by spin TQFTs at low energy. We formulate a 1616-fold way conjecture for the minimal modular extensions of super-modular categories to spin modular categories, which is a categorical formulation of gauging the fermion parity. We investigate general properties of super-modular categories such as fermions in twisted Drinfeld doubles, Verlinde formulas for naive quotients, and explicit extensions of PSU(2)4m+2PSU(2)_{4m+2} with an eye towards a classification of the low-rank cases.Comment: Latest post-referee version. Many typos fixed, many explanations expanded, several inconsistencies corrected. 8 figure
    corecore