17,899 research outputs found

    A theoretical study of microwave beam absorption by a rectenna

    Get PDF
    The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed

    Emulating a flexible space structure: Modeling

    Get PDF
    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work

    Characterization and properties of controlled nucleation thermochemical deposited (CNTD) silicon carbide

    Get PDF
    The microstructure of controlled nucleation thermochemical deposition (CNTD) - SiC material was studied and the room temperature and high temperature bend strength and oxidation resistance was evaluated. Utilizing the CNTD process, ultrafine grained (0.01-0.1 mm) SiC was deposited on W - wires (0.5 mm diameter by 20 cm long) as substrates. The deposited SiC rods had superior surface smoothness and were without any macrocolumnar growth commonly found in conventional CVD material. At both room and high temperature (1200 - 1380 C), the CNTD - SiC exhibited bend strength approximately 200,000 psi (1380 MPa), several times higher than that of hot pressed, sintered, or CVD SiC. The excellent retention of strength at high temperature was attributed to the high purity and fine grain size of the SiC deposit and the apparent absence of grain growth at elevated temperatures. The rates of weight change for CNTD - SiC during oxidation were lower than for NC-203 (hot pressed SiC), higher than for GE's CVD - SiC, and considerably below those for HS-130 (hot pressed Si3N4). The high purity, fully dense, and stable grain size CNTD - SiC material shows potential for high temperature structural applications; however problem areas might include: scaling the process to make larger parts, deposition on removable substrates, and the possible residual tensile stress

    APPLICATION OF THE MODULARIZATION CONCEPT TO SATELLITE TAPE RECORDERS

    Get PDF
    Application of the modularization concept to satellite tape recorder

    Analysis of permanent magnets as elasmobranch bycatch reduction devices in hook-and-line and longline trials

    Get PDF
    Previous studies indicate that elasmobranch fishes (sharks, skates and rays) detect the Earth’s geomagnetic field by indirect magnetoreception through electromagnetic induction, using their ampullae of Lorenzini. Applying this concept, we evaluated the capture of elasmobranchs in the presence of permanent magnets in hook-and-line and inshore longline fishing experiments. Hooks with neodymium-iron-boron magnets significantly reduced the capture of elasmobranchs overall in comparison with control and procedural control hooks in the hook-and-line experiment. Catches of Atlantic sharpnose shark (Rhizoprionodon terraenovae) and smooth dogfish (Mustelus canis) were signif icantly reduced with magnetic hook-and-line treatments, whereas catches of spiny dogfish (Squalus acanthias) and clearnose skate (Raja eglanteria) were not. Longline hooks with barium-ferrite magnets significantly reduced total elasmobranch capture when compared with control hooks. In the longline study, capture of blacktip sharks (Carcharhinus limbatus) and southern stingrays (Dasyatis americana) was reduced on magnetic hooks, whereas capture of sandbar shark (Carcharhinus plumbeus) was not affected. Teleosts, such as red drum (Sciaenops ocellatus), Atlantic croaker (Micropogonias undulatus), oyster toadfish (Opsanus tau), black sea bass (Centropristis striata), and the bluefish (Pomatomas saltatrix), showed no hook preference in either hook-and-line or longline studies. These results indicate that permanent magnets, although eliciting species-specific capture trends, warrant further investigation in commercial longline and recreational fisheries, where bycatch mortality is a leading contributor to declines in elasmobranch populations

    Purification and detection of entangled coherent states

    Full text link
    In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a proposal is made to generate entangled macroscopically distinguishable states of two spatially separated traveling optical modes. We model the decoherence due to light scattering during the propagation along an optical transmission line and propose a setup allowing an entanglement purification from a number of preparations which are partially decohered due to transmission. A purification is achieved even without any manual intervention. We consider a nondemolition configuration to measure the purity of the state as contrast of interference fringes in a double-slit setup. Regarding the entangled coherent states as a state of a bipartite quantum system, a close relationship between purity and entanglement of formation can be obtained. In this way, the contrast of interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex

    Entangled and disentangled evolution for a single atom in a driven cavity

    Full text link
    For an atom in an externally driven cavity, we show that special initial states lead to near-disentangled atom-field evolution, and superpositions of these can lead to near maximally-entangled states. Somewhat counterintutively, we find that (moderate) spontaneous emission in this system actually leads to a transient increase in entanglement beyond the steady-state value. We also show that a particular field correlation function could be used, in an experimental setting, to track the time evolution of this entanglement

    Acoustic performance of inlet multiple-pure-tone suppressors installed on NASA quiet engine C

    Get PDF
    The length of multiple-pure-tone (MPT) treatment required to reasonably suppress the MPT's produced by a supersonic tip speed fan was defined. Other suppression, broadband, and blade passing frequency, which might be accomplished were also determined. The experimental results are presented in terms of both far-field and duct acoustic data

    NERVA Development Status

    Get PDF
    During the past few years significant accomplishments have been made in nuclear rocket development. It is the purpose of this paper to review this progress and to highlight the present status of the NERVA engine development. NERVA is part of the ROVER nuclear rocket engine program which was initiated at the Los Alamos Scientific Laboratory in 1955. Figure 1 traces the key accomplishments of this development program from the beginning through the demonstration of feasibility, to the present phase of advancing the technology and extending performance. The initial progress achieved by Los Alamos on the conceptual reactor design and fuel element development was rapid and, by 1959, the KIWI series of reactor tests demonstrated the significant performance and potential of nuclear rocket engines and stimulated interest in the development of a flight-type engine. The NERVA (Nuclear Engine for Rocket Vehicle Applications) Program was initiated in 1961. This effort, under the direction of the Space Nuclear Propul sion Office of J\TASA and the AEC, is being performed by the Aerojet-General Corporation as the prime contractor and the Westinghouse Electric Corporation as the principal subcontractor for the nuclear subsystem development. The KIWI development program demonstrated feasibility and proof-ofprinciple of the nuclear rocket reactor. The NERVA Program is intended to extend these principles to practical application in the development of a system that would withstand the loads , environment, and operating requirements of flight. The KIWI and NERVA reactor programs have been closely coordinated to provide a continuing, logical development, and the chronology of progress clearly highlights the noteworthy advance that has been achieved in our basic technological understanding of the operating potentials and characteristics of the nuclear rocket engine
    • …
    corecore