2,845 research outputs found

    Interpretations of the Accelerating Universe

    Full text link
    It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy'. We argue here that an alternative model of the universe is possible which explains the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a paragraph on the interpretation of the CMB anisotropy in the QSSC added in conclusion, general results unchanged. To appear in the October 2002 issue of the "Publications of the Astronmical Society of the Pacific

    Properties of a future susy universe

    Full text link
    In the string landscape picture, the effective potential is characterized by an enormous number of local minima of which only a minuscule fraction are suitable for the evolution of life. In this "multiverse", random transitions are continually made between the various minima with the most likely transitions being to minima of lower vacuum energy. The inflationary era in the very early universe ended with such a transition to our current phase which is described by a broken supersymmetry and a small, positive vacuum energy. However, it is likely that an exactly supersymmetric (susy) phase of zero vacuum energy as in the original superstring theory also exists and that, at some time in the future, there will be a transition to this susy world. In this article we make some preliminary estimates of the consequences of such a transition.Comment: 17 pages, 3 figures; intermediate extensions/revisions available at http://www.bama.ua.edu/~lclavell/Susyria.pd

    The cosmological BCS mechanism and the Big Bang Singularity

    Full text link
    We provide a novel mechanism that resolves the Big Bang Singularity present in FRW space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in General Relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter HH to zero and results in a non-singular bounce, at least in some special cases.Comment: replaced to match the journal versio

    Astrophysical implications of hypothetical stable TeV-scale black holes

    Get PDF
    We analyze macroscopic effects of TeV-scale black holes, such as could possibly be produced at the LHC, in what is regarded as an extremely hypothetical scenario in which they are stable and, if trapped inside Earth, begin to accrete matter. We examine a wide variety of TeV-scale gravity scenarios, basing the resulting accretion models on first-principles, basic, and well-tested physical laws. These scenarios fall into two classes, depending on whether accretion could have any macroscopic effect on the Earth at times shorter than the Sun's natural lifetime. We argue that cases with such effect at shorter times than the solar lifetime are ruled out, since in these scenarios black holes produced by cosmic rays impinging on much denser white dwarfs and neutron stars would then catalyze their decay on timescales incompatible with their known lifetimes. We also comment on relevant lifetimes for astronomical objects that capture primordial black holes. In short, this study finds no basis for concerns that TeV-scale black holes from the LHC could pose a risk to Earth on time scales shorter than the Earth's natural lifetime. Indeed, conservative arguments based on detailed calculations and the best-available scientific knowledge, including solid astronomical data, conclude, from multiple perspectives, that there is no risk of any significance whatsoever from such black holes.Comment: Version2: Minor corrections/fixed typos; updated reference

    Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale

    Get PDF
    We conducted three torsion-balance experiments to test the gravitational inverse-square law at separations between 9.53 mm and 55 micrometers, probing distances less than the dark-energy length scale λd=c/ρd485μ\lambda_{\rm d}=\sqrt[4]{\hbar c/\rho_{\rm d}}\approx 85 \mum. We find with 95% confidence that the inverse-square law holds (α1|\alpha| \leq 1) down to a length scale λ=56μ\lambda = 56 \mum and that an extra dimension must have a size R44μR \leq 44 \mum.Comment: 4 pages, 6 figure

    Vacuum friction in rotating particles

    Get PDF
    We study the frictional torque acting on particles rotating in empty space. At zero temperature, vacuum friction transforms mechanical energy into light emission and produces particle heating. However, particle cooling relative to the environment occurs at finite temperatures and low rotation velocities. Radiation emission is boosted and its spectrum significantly departed from a hot-body emission profile as the velocity increases. Stopping times ranging from hours to billions of years are predicted for materials, particle sizes, and temperatures accessible to experiment. Implications for the behavior of cosmic dust are discussed.Comment: 4 figures, 10 pages, includes paper and supplementary information in the appendi

    Modeling Repulsive Gravity with Creation

    Get PDF
    There is a growing interest in the cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold and Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z<0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory - the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.Comment: The paper uses an old SNeIa dataset. With the new improved data, for example the updated gold sample (Riess et al, astro-ph/0611572), the fit improves considerably (\chi^2/DoF=197/180 and a probability of goodness-of-fit=18%

    Effectively four-dimensional spacetimes emerging from d=5 Einstein-Gauss-Bonnet Gravity

    Full text link
    Einstein-Gauss-Bonnet gravity in five-dimensional spacetime provides an excellent example of a theory that, while including higher-order curvature corrections to General Relativity, still shares many of its features, such as second-order field equations for the metric. We focus on the largely unexplored case where the coupling constants of the theory are such that no constant-curvature solution is allowed, leaving open the question of what the vacuum state should then be. We find that even a slight deviation from the anti-de Sitter Chern-Simons theory, where the vacuum state is five-dimensional AdS spacetime, leads to a complete symmetry breakdown, with the fifth dimension either being compactified into a small circle or shrinking away exponentially with time. A complete family of solutions, including duality relations among them, is uncovered and shown to be unique within a certain class. This dynamical dimensional reduction scenario seems particularly attractive as a means for higher-dimensional theories to make contact with our four-dimensional world.Comment: 9 pages, 4 figures. v2: New section on geometrical significance of solutions. Final version for CQ

    Dynamical Friction in a Gaseous Medium

    Get PDF
    Using time-dependent linear perturbation theory, we evaluate the dynamical friction force on a massive perturber M_p traveling at velocity V through a uniform gaseous medium of density rho_0 and sound speed c_s. This drag force acts in the direction -\hat V, and arises from the gravitational attraction between the perturber and its wake in the ambient medium. For supersonic motion (M=V/c_s>1), the enhanced-density wake is confined to the Mach cone trailing the perturber; for subsonic motion (M<1), the wake is confined to a sphere of radius c_s t centered a distance V t behind the perturber. Inside the wake, surfaces of constant density are hyperboloids or oblate spheroids for supersonic or subsonic perturbers, respectively, with the density maximal nearest the perturber. The dynamical drag force has the form F_df= - I 4\pi (G M_p)^2\rho_0/V^2. We evaluate I analytically; its limits are I\to M^3/3 for M>1. We compare our results to the Chandrasekhar formula for dynamical friction in a collisionless medium, noting that the gaseous drag is generally more efficient when M>1 but less efficient when M<1. To allow simple estimates of orbit evolution in a gaseous protogalaxy or proto-star cluster, we use our formulae to evaluate the decay times of a (supersonic) perturber on a near-circular orbit in an isothermal \rho\propto r^{-2} halo, and of a (subsonic) perturber on a near-circular orbit in a constant-density core. We also mention the relevance of our calculations to protoplanet migration in a circumstellar nebula.Comment: 17 pages, 5 postscript figures, to appear in ApJ 3/1/9

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure
    corecore