109 research outputs found

    Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension: Implications for Therapy.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive incurable condition that is characterized by extensive remodeling of the pulmonary circulation, leading to severe right-sided heart failure and death. Similar to other vascular contractile cells, pulmonary arterial smooth muscle cells play central roles in physiological and pathologic vascular remodeling because of their remarkable ability to dynamically modulate their phenotype to ensure contractile and synthetic functions. The dysfunction and molecular mechanisms underlying their contribution to the various pulmonary vascular lesions associated with PAH have been a major focus of research. The aim of this review is to describe the medial and nonmedial origins of contractile cells in the pulmonary vascular wall and present evidence of how they contribute to the onset and progression of PAH. We also highlight specific potential target molecules and discuss future directions that are being explored to widen the therapeutic options for the treatment of PAH

    Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells

    Get PDF
    Serotonin or 5-hydroxytryptamine (5-HT) has been shown to be essential in lots of physiological and pathological processes. It is well known that 5-HT and 5-HT transporter (5-HTT) play important roles in the pulmonary artery in pulmonary hypertension. However, little is known about the function of 5-HTT in other arteries. In this study we found that the expression of 5-HTT was elevated in injured carotid arteries and over-expression of 5-HTT induced proliferation of smooth muscle cells (SMCs); however, this phenotype could be reversed by knocking-down of 5-HTT or endothelial cells conditional medium (EC-CM). A 5-HTT inhibitor, fluoxetine, treated animals also exhibited reduced restenosis after injury. We identified that miR-195 was packaged in the extracellular vesicles from EC-CM. We further confirmed that extracellular vesicles could transfer miR-195 from ECs to SMCs to inhibit the expression of 5-HTT in SMCs and the proliferation of SMCs. These results provide the first evidence that ECs communicate with SMCs via micro-RNA195 in the regulation of the proliferation of SMCs through 5-HTT, which will contribute to a better understanding of communications between ECs and SMCs via micro-RNA. Our findings suggest a potential target for the control of vessel restenosis

    Renal Denervation Reduces Pulmonary Vascular Remodeling and Right Ventricular Diastolic Stiffness in Experimental Pulmonary Hypertension

    Get PDF
    Neurohormonal overactivation plays an important role in pulmonary hypertension (PH). In this context, renal denervation, which aims to inhibit the neurohormonal systems, may be a promising adjunct therapy in PH. In this proof-of-concept study, we have demonstrated in 2 experimental models of PH that renal denervation delayed disease progression, reduced pulmonary vascular remodeling, lowered right ventricular afterload, and decreased right ventricular diastolic stiffness, most likely by suppression of the renin-angiotensin-aldosterone system

    Selective Serotonin Reuptake Inhibitor Use Is Associated with Right Ventricular Structure and Function: The MESA-Right Ventricle Study

    Get PDF
    PURPOSE:Serotonin and the serotonin transporter have been implicated in the development of pulmonary hypertension (PH). Selective serotonin reuptake inhibitors (SSRIs) may have a role in PH treatment, but the effects of SSRI use on right ventricular (RV) structure and function are unknown. We hypothesized that SSRI use would be associated with RV morphology in a large cohort without cardiovascular disease (N = 4114). METHODS:SSRI use was determined by medication inventory during the Multi-Ethnic Study of Atherosclerosis baseline examination. RV measures were assessed via cardiac magnetic resonance imaging. The cross-sectional relationship between SSRI use and each RV measure was assessed using multivariable linear regression; analyses for RV mass and end-diastolic volume (RVEDV) were stratified by sex. RESULTS:After adjustment for multiple covariates including depression and left ventricular measures, SSRI use was associated with larger RV stroke volume (RVSV) (2.75 mL, 95% confidence interval [CI] 0.48-5.02 mL, p = 0.02). Among men only, SSRI use was associated with greater RV mass (1.08 g, 95% CI 0.19-1.97 g, p = 0.02) and larger RVEDV (7.71 mL, 95% 3.02-12.40 mL, p = 0.001). SSRI use may have been associated with larger RVEDV among women and larger RV end-systolic volume in both sexes. CONCLUSIONS:SSRI use was associated with higher RVSV in cardiovascular disease-free individuals and, among men, greater RV mass and larger RVEDV. The effects of SSRI use in patients with (or at risk for) RV dysfunction and the role of sex in modifying this relationship warrant further study

    Altered Gene Expression in Pulmonary Tissue of Tryptophan Hydroxylase-1 Knockout Mice: Implications for Pulmonary Arterial Hypertension

    Get PDF
    The use of fenfluramines can increase the risk of developing pulmonary arterial hypertension (PAH) in humans, but the mechanisms responsible are unresolved. A recent study reported that female mice lacking the gene for tryptophan hydroxylase-1 (Tph1(−/−) mice) were protected from PAH caused by chronic dexfenfluramine, suggesting a pivotal role for peripheral serotonin (5-HT) in the disease process. Here we tested two alternative hypotheses which might explain the lack of dexfenfluramine-induced PAH in Tph1(−/−) mice. We postulated that: 1) Tph1(−/−) mice express lower levels of pulmonary 5-HT transporter (SERT) when compared to wild-type controls, and 2) Tph1(−/−) mice display adaptive changes in the expression of non-serotonergic pulmonary genes which are implicated in PAH. SERT was measured using radioligand binding methods, whereas gene expression was measured using microarrays followed by quantitative real time PCR (qRT-PCR). Contrary to our first hypothesis, the number of pulmonary SERT sites was modestly up-regulated in female Tph1(−/−) mice. The expression of 51 distinct genes was significantly altered in the lungs of female Tph1(−/−) mice. Consistent with our second hypothesis, qRT-PCR confirmed that at least three genes implicated in the pathogenesis of PAH were markedly up-regulated: Has2, Hapln3 and Retlna. The finding that female Tph1(−/−) mice are protected from dexfenfluramine-induced PAH could be related to compensatory changes in pulmonary gene expression, in addition to reductions in peripheral 5-HT. These observations emphasize the intrinsic limitation of interpreting data from studies conducted in transgenic mice that are not fully characterized

    Gene expression in lungs of mice lacking the 5-hydroxytryptamine transporter gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While modulation of the serotonin transporter (5HTT) has shown to be a risk factor for pulmonary arterial hypertension for almost 40 years, there is a lack of in vivo data about the broad molecular effects of pulmonary inhibition of 5HTT. Previous studies have suggested effects on inflammation, proliferation, and vasoconstriction. The goal of this study was to determine which of these were supported by alterations in gene expression in serotonin transporter knockout mice.</p> <p>Methods</p> <p>Eight week old normoxic mice with a 5-HTT knock-out (5HTT-/-) and their heterozygote(5HTT+/-) or wild-type(5HTT+/+) littermates had right ventricular systolic pressure(RVSP) assessed, lungs collected for RNA, pooled, and used in duplicate in Affymetrix array analysis. Representative genes were confirmed by quantitative RT-PCR and western blot.</p> <p>Results</p> <p>RVSP was normal in all groups. Only 124 genes were reliably changed between 5HTT-/- and 5HTT+/+ mice. More than half of these were either involved in inflammatory response or muscle function and organization; in addition, some matrix, heme oxygenase, developmental, and energy metabolism genes showed altered expression. Quantitative RT-PCR for examples from each major group confirmed changes seen by array, with an intermediate level in 5HTT +/- mice.</p> <p>Conclusion</p> <p>These results for the first time show the in vivo effects of 5HTT knockout in lungs, and show that many of the downstream mechanisms suggested by cell culture and ex vivo experiments are also operational in vivo. This suggests that the effect of 5HTT on pulmonary vascular function arises from its impact on several systems, including vasoreactivity, proliferation, and immune function.</p

    Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New animal models of chronic pulmonary hypertension in mice are needed. The injection of monocrotaline is an established model of pulmonary hypertension in rats. The aim of this study was to establish a murine model of pulmonary hypertension by injection of the active metabolite, monocrotaline pyrrole.</p> <p>Methods</p> <p>Survival studies, computed tomographic scanning, histology, bronchoalveolar lavage were performed, and arterial blood gases and hemodynamics were measured in animals which received an intravenous injection of different doses of monocrotaline pyrrole.</p> <p>Results</p> <p>Monocrotaline pyrrole induced pulmonary hypertension in Sprague Dawley rats. When injected into mice, monocrotaline pyrrole induced dose-dependant mortality in C57Bl6/N and BALB/c mice (dose range 6–15 mg/kg bodyweight). At a dose of 10 mg/kg bodyweight, mice developed a typical early-phase acute lung injury, characterized by lung edema, neutrophil influx, hypoxemia and reduced lung compliance. In the late phase, monocrotaline pyrrole injection resulted in limited lung fibrosis and no obvious pulmonary hypertension.</p> <p>Conclusion</p> <p>Monocrotaline and monocrotaline pyrrole pneumotoxicity substantially differs between the animal species.</p

    Loss-of-function ABCC8 mutations in pulmonary arterial hypertension

    Get PDF
    Background: In pulmonary arterial hypertension (PAH), pathological changes in pulmonary arterioles progressively raise pulmonary artery pressure and increase pulmonary vascular resistance, leading to right heart failure and high mortality rates. Recently, the first potassium channelopathy in PAH, because of mutations in KCNK3, was identified as a genetic cause and pharmacological target. Methods: Exome sequencing was performed to identify novel genes in a cohort of 99 pediatric and 134 adult-onset group I PAH patients. Novel rare variants in the gene identified were independently identified in a cohort of 680 adult-onset patients. Variants were expressed in COS cells and function assessed by patch-clamp and rubidium flux analysis. Results: We identified a de novo novel heterozygous predicted deleterious missense variant c.G2873A (p.R958H) in ABCC8 in a child with idiopathic PAH. We then evaluated all individuals in the original and a second cohort for rare or novel variants in ABCC8 and identified 11 additional heterozygous predicted damaging ABCC8 variants. ABCC8 encodes SUR1 (sulfonylurea receptor 1)—a regulatory subunit of the ATP-sensitive potassium channel. We observed loss of ATP-sensitive potassium channel function for all ABCC8 variants evaluated and pharmacological rescue of all channel currents in vitro by the SUR1 activator, diazoxide. Conclusions: Novel and rare missense variants in ABCC8 are associated with PAH. Identified ABCC8 mutations decreased ATP-sensitive potassium channel function, which was pharmacologically recovered

    The Renin-Angiotensin System in Pulmonary Hypertension Reply

    No full text

    Purinergic Dysfunction in Pulmonary Arterial Hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a life‐threatening disease characterized by increased pulmonary arterial pressure and pulmonary vascular resistance, which result in an increase in afterload imposed onto the right ventricle, leading to right heart failure. Current therapies are incapable of reversing the disease progression. Thus, the identification of novel and potential therapeutic targets is urgently needed. An alteration of nucleotide‐ and nucleoside‐activated purinergic signaling has been proposed as a potential contributor in the pathogenesis of PAH. Adenosine‐mediated purinergic 1 receptor activation, particularly A2AR activation, reduces pulmonary vascular resistance and attenuates pulmonary vascular remodeling and right ventricle hypertrophy, thereby exerting a protective effect. Conversely, A2BR activation induces pulmonary vascular remodeling, and is therefore deleterious. ATP‐mediated P2X7R activation and ADP‐mediated activation of P2Y1R and P2Y12R play a role in pulmonary vascular tone, vascular remodeling, and inflammation in PAH. Recent studies have revealed a role of ectonucleotidase nucleoside triphosphate diphosphohydrolase, that degrades ATP/ADP, in regulation of pulmonary vascular remodeling. Interestingly, existing evidence that adenosine activates erythrocyte A2BR signaling, counteracting hypoxia‐induce
    corecore