308 research outputs found

    Correlation between microstructure and superconducting properties of MgB2 bulk samples with Mg addition and Mg/hBN co-additions

    Get PDF
    The microstructure of polycrystalline MgB2 has a strong influence on the current carrying ability, with grain boundaries and non-superconducting nanoparticles acting as good flux pinning centres which improve the local (intrinsic) critical current density (Jc) of the material, whereas porosity and poor connectivity between grains or particles adversely affect macroscopic current transport. Previous studies have found that hexagonal boron nitride (hBN) doping improves intrinsic Jc by introducing nanoscale flux pinning centres, and Mg doping improves extrinsic Jc by liquid-assisted sintering. Here we investigate the effect of co-doping with 5 wt.% Mg and 1 wt.% hBN with the aim of combining the improved intrinsic and extrinsic properties in bulk MgB2 samples fabricated using field assisted sintering. Additionally, the influence of ball milling and processing temperatures on MgB2 samples with only Mg additions is reported. By correlating microstructure with superconducting properties, we show that the presence of Mg liquid during processing of Mg-doped samples accelerates the reaction between BN and MgB2, forming an impurity phase, MgNB9, the presence of which is detrimental to superconducting performance. Nevertheless, we have achieved a considerable improvement in performance of samples doped only with Mg by increasing the sintering temperature

    Preparation, microstructure and microwave dielectric properties of sprayed PFA/barium titanate composite films

    Get PDF
    Frequency dependence of the dielectric properties of polymer-ferroelectric composites at different bands of microwave frequencies was investigated in this work. Perfluoroalkoxy (PFA)/barium titanate (BaTiO3) nanocomposite films were prepared by spray deposition. The spraying process was scaled up to fabricate large area (max. 160 mm × 160 mm) uniform composite sheets out of which a controlled bonding process was introduced to form composite blocks. The microstructure of the composite films was examined by SEM with a microtome sample preparation method to evaluate the effectiveness of the spraying process at producing uniform particle distributions. The dielectric properties of the composite films with various BaTiO3 loadings were characterised by an Impedance Analyzer at frequencies between 10 Hz and 1 MHz and Vector Network Analyzer at 12–18 GHz respectively. The Lichtenecker mixing rule was incorporated to fit the measured dielectric constant data, which gives estimates of dielectric constant of the BaTiO3 nanometer sized particles to be 895 and 571 at 10 kHz and 15 GHz respectively. In comparison, the composite effective dielectric constant was approximately reduced by 25% at 10 kHz than that at 15 GHz

    High resolution characterisation of microstructural evolution in Rbx_{x}Fe2−y_{2-y}Se2_{2} crystals on annealing

    Full text link
    The superconducting and magnetic properties of phase-separated Ax_xFe2−y_{2-y}Se2_2 compounds are known to depend on post-growth heat treatments and cooling profiles. This paper focusses on the evolution of microstructure on annealing, and how this influences the superconducting properties of Rbx_xFe2−y_2-ySe2_2 crystals. We find that the minority phase in the as-grown crystal has increased unit cell anisotropy (c/a ratio), reduced Rb content and increased Fe content compared to the matrix. The microstructure is rather complex, with two-phase mesoscopic plate-shaped features aligned along {113} habit planes. The minority phase are strongly facetted on the {113} planes, which we have shown to be driven by minimising the volume strain energy introduced as a result of the phase transformation. Annealing at 488K results in coarsening of the mesoscopic plate-shaped features and the formation of a third distinct phase. The subtle differences in structure and chemistry of the minority phase(s) in the crystals are thought to be responsible for changes in the superconducting transition temperature. In addition, scanning photoemission microscopy has clearly shown that the electronic structure of the minority phase has a higher occupied density of states of the low binding energy Fe3d orbitals, characteristic of crystals that exhibit superconductivity. This demonstrates a clear correlation between the Fe-vacancy-free phase with high c/a ratio and the electronic structure characteristics of the superconducting phase.Comment: 6 figures v2 is exactly the same as v1. The typesetting errors in the abstract have been correcte

    Individual grain boundary properties and overall performance of metal-organic deposition coated conductors

    Get PDF
    have investigated single grain boundaries (GBs) isolated in coated conductors produced by metal-organic deposition. When a magnetic field is swept in the film plane, an angle-dependent crossover from boundary to grain limited critical current density J(c) is found. In the force-free orientation, even at fields as high as 8 T, the GBs still limit Jc. We deduce that this effect is a direct consequence of GB meandering. We have employed these single GB results to explain the dependence of Jc of polycrystalline tracks on their width: in-plane measurements become flatter as the tracks are narrowed down. This result is consistent with the stronger GB limitation at field configurations close to force-free found from the isolated boundaries. Our study shows that for certain geometries even at high fields the effect of GBs cannot be neglected.This work was supported by the Engineering and Physical Sciences Research Council [grant numbers EP/C011546/1 and EP/C011554/1

    Microstructural analysis of phase separation in iron chalcogenide superconductors

    Full text link
    The interplay between superconductivity, magnetism and crystal structure in iron-based superconductors is a topic of great interest amongst the condensed matter physics community as it is thought to be the key to understanding the mechanisms responsible for high temperature superconductivity. Alkali metal doped iron chalcogenide superconductors exhibit several unique characteristics which are not found in other iron-based superconducting materials such as antiferromagnetic ordering at room temperature, the presence of ordered iron vacancies and high resistivity normal state properties. Detailed microstructural analysis is essential in order to understand the origin of these unusual properties. Here we have used a range of complementary scanning electron microscope based techniques, including high-resolution electron backscatter di raction mapping, to assess local variations in composition and lattice parameter with high precision and sub-micron spatial resolution. Phase separation is observed in the Csx Fe2-ySe2 crystals, with the minor phase distributed in a plate-like morphology throughout the crystal. Our results are consistent with superconductivity occurring only in the minority phase.Comment: Accepted for publication in a special edition of Supercond. Sci. Techno

    Initiation of dendritic failure of LLZTO via sub-surface lithium deposition

    Get PDF
    The occurrence of lithium deposition in occluded spaces within ceramic electrolytes due to electronic leakage currents can jeopardise the commercialization of power-dense solid-state batteries. Here, we utilize plasma-FIB serial sectioning to visualize the surface and sub-surface of a garnet solid electrolyte (LLZTO) after lithium plating. We study the morphology of surface spallation cracks, which represent the initial stage of dendrite formation. Employing a LiMg anode, we track the magnesium diffusion around these surface cracks with EDS. The absence of magnesium in early-stage cracks suggests they form due to the pressure build-up from the deposition of pure lithium in occluded pores near the electrolyte surface. These spallation cracks act as current focusing and stress concentration hot spots. Electron beam induced current imaging demonstrates that short-circuiting lithium dendrites grow from the spallations during plating. Thus, the sub-surface deposition of lithium is a possible explanation for the initiation of lithium dendrites in LLZTO

    A Trapped Field of >3T in Bulk MgB2 Fabricated by Uniaxial Hot Pressing

    Full text link
    A trapped field of over 3 T has been measured at 17.5 K in a magnetised stack of two disc-shaped bulk MgB2 superconductors of diameter 25 mm and thickness 5.4 mm. The bulk MgB2 samples were fabricated by uniaxial hot pressing, which is a readily scalable, industrial technique, to 91% of their maximum theoretical density. The macroscopic critical current density derived from the trapped field data using the Biot-Savart law is consistent with the measured local critical current density. From this we conclude that critical current density, and therefore trapped field performance, is limited by the flux pinning available in MgB2, rather than by lack of connectivity. This suggests strongly that both increasing sample size and enhancing pinning through doping will allow further increases in trapped field performance of bulk MgB2.Comment: 10 pages, 4 figures. Accepted as a Rapid Publication in Superconductor Science and Technology (Final version after peer review

    Specimen preparation methods for elemental characterisation of grain boundaries and isolated dislocations in multicrystalline silicon using atom probe tomography

    Get PDF
    Multicrystalline silicon (mc-Si) is a cost effective feedstock for solar photovoltaic devices but is limited by the presence of defects and impurities. Imaging impurities segregated to nanometre-scale dislocations and grain boundaries is a challenge that few materials characterisation techniques can achieve. Atom Probe Tomography (APT) is a 3-dimensional time-of-flight microscopy technique that can image the distribution of elements at the atomic scale, however one of the most challenging factors when using APT is the complexity of specimen preparation for specific regions of interest. Atom probe specimen preparation methods have been developed in a dual FIB/SEM system that enable a specific extended defect such as an isolated dislocation or a section of a grain boundary to be selected for APT analysis. The methods were used to fabricate APT specimens from an isolated dislocation and a grain boundary in mc-Si samples. Complementary TEM images confirm the presence of the defects in both specimens, whilst APT analyses also reveal segregation of impurities to the defects

    Removal and Reoccurrence of LLZTO Surface Contaminants under Glovebox Conditions

    Get PDF
    The reactivity of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolytes to form lithio-phobic species such as Li2CO3 on their surface when exposed to trace amounts of H2O and CO2 limits the progress of LLZTO-based solid-state batteries. Various treatments, such as annealing LLZTO within a glovebox or acid etching, aim at removing the surface contaminants, but a comprehensive understanding of the evolving LLZTO surface chemistry during and after these treatments is lacking. Here, glovebox-like H2O and CO2 conditions were recreated in a near ambient pressure X-ray photoelectron spectroscopy chamber to analyze the LLZTO surface under realistic conditions. We find that annealing LLZTO at 600 °C in this atmosphere effectively removes the surface contaminants, but a significant level of contamination reappears upon cooling down. In contrast, HCl(aq) acid etching demonstrates superior Li2CO3 removal and stable surface chemistry post treatment. To avoid air exposure during the acid treatment, an anhydrous HCl solution in diethyl ether was used directly within the glovebox. This novel acid etching strategy delivers the lowest lithium/LLZTO interfacial resistance and the highest critical current density
    • …
    corecore