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Abstract

Frequency dependence of the dielectric properties of polymer-ferroelectric com-

posites at different bands of microwave frequencies was investigated in this work.

Perfluoroalkoxy (PFA) / barium titanate (BaTiO3) nanocomposite films were

prepared by spray deposition. The spraying process was scaled up to fabri-

cate large area (max. 160 mm x 160 mm) uniform composite sheets out of

which a controlled bonding process was introduced to form composite blocks.

The microstructure of the composite films was examined by SEM with a micro-

tome sample preparation method to evaluate the effectiveness of the spraying

process at producing uniform particle distributions. The dielectric properties

of the composite films with various BaTiO3 loadings were characterised by an

Impedance Analyzer at frequencies between 10 Hz and 1 MHz and Vector Net-

work Analyzer at 12 - 18 GHz respectively. The Lichtenecker mixing rule was

incorporated to fit the measured dielectric constant data, which gives estimates

of dielectric constant of the BaTiO3 nanometer sized particles to be 895 and

571 at 10 kHz and 15 GHz respectively. In comparison, the composite effective

dielectric constant was approximately reduced by 25% at 10 kHz than that at

15 GHz.
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1. Introduction

Polymer-ferroelectric composite films are widely used for electronics at mi-

crowave frequencies (up to a few MHz) including capacitors and other energy

storage devices [1, 2, 3], as well as for high frequency applications (> GHz) in

the telecommunications industry such as for beam steering, antennas and elec-5

tromagnetic interference devices [4, 5, 6]. Combining the advantages of the easy

processability and high break down strength of polymers with the high dielec-

tric constant of ferroelectric materials, polymer-ferroelectric composites offer a

simple way to manufacture high permittivity materials with reproducible prop-

erties [7, 8]. Barium titanate BaTiO3 (BT) is a widely available ferroelectric10

material with high dielectric constant, and is the most common choice for the

ceramic filler material. BT shows a large dielectric relaxation at microwave

frequencies whose origin is linked to its domain structure. The dielectric re-

laxation frequency depends on the ferroelectric domain size and typically lies

in the range 100 MHz to 10 GHz [9]. A relaxation frequency near 1 GHz has15

been experimentally demonstrated for BT with different domain sizes, where

for instance the dielectric constant for samples with micrometer sized domains

dropped from 1900 at 10 kHz to 280 at 5.6 GHz [1]. It is expected that this

frequency-dependent dielectric performance of BT will also be observed in poly-

mer/BT composite materials.20

Although data has been reported for the dielectric constant of polymer-

ferroelectric composite films at low frequencies, very limited reference data can

be found for high frequency measurements of the same materials. In part this

is due to sample preparation difficulties for the high frequency measurements

[10]. For composite films, capacitance measurements using an impedance an-25

alyzer is the conventional way to obtain dielectric constant data [11, 12, 13],

which unfortunately is only suitable for measurements up to 1 GHz. Attempts
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have been made to measure the dielectric performance of composite films at

high frequencies using resonator or free space techniques [14, 15]. However,

both of these two techniques suffer from intrinsic drawbacks that significantly30

limit their application for routine high frequency measurements. The resonator

method is not suitable for monitoring the dielectric performance over a con-

tinuous frequency band whereas the free space technique is very demanding on

equipment and hence is expensive to apply for routine measurements [16]. In

contrast, the transmission/reflection technique is ideal for easy and continuous35

dielectric measurement at high frequencies. However, for a typical waveguide

measurement in the Ku band (12.4 GHz - 18 GHz), samples are required to be

the order of a mm thick in order to guarantee reliable measurements, and this

poses a challenge for film samples that normally have thicknesses in the nm to

µm range. In this work, we have designed a carefully monitored hot pressing40

method to create reproducible samples from sprayed composite films for high

frequency waveguide measurements. Thermoplastic/BT composite films up to

120 µm thick were stacked and hot-pressed at a temperature just above poly-

mer melting temperature to build up a sufficient sample thickness for a reliable

waveguide measurement without altering the microstructure of the material. Di-45

electric properties of the polymer-ferroelectric composite films were measured

and compared at low frequencies (100 Hz - 1 MHz) and at high frequencies (12

- 18 GHz) in our work.

Industrial applications of polymer-ferroelectric composite films require ac-

curate control and prediction of the dielectric performance. Several theoretical50

models are available to predict the dielectric properties of composite systems,

and their validity tested by curve fitting to experimental data [11, 17, 18, 19,

20, 21]. It is worth noting that conclusions are rarely drawn on which model

is superior to another in giving better fitting to this experimental data. The

application of mixing rules can also be used to estimate the dielectric constant55

of the ferroelectric nanometer sized particles in a composite, since it is difficult

to measure the dielectric properties of the nanometer sized particles alone. This

is a useful procedure because the dielectric constant of nanometer sized ceramic
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particles is expected to deviate significantly from that measured in bulk ce-

ramics due to the three dimensional clamping effect in bulk ceramics [1]. For60

instance, from data fitting using the Lichtenecker [22] and Jayasundere & Smith

[20] equations dielectric constant values an order of magnitude lower have been

reported at 100 kHz for barium titanate particles (282 for 0.25 µm particles)

than for bulk ceramics (∼2000) [17]. In our work, the Lichtenecker equation

was used to fit the measured dielectric constants of PFA/BT nanocomposite65

films at 10 kHz and 15 GHz to allow us to estimate the dielectric constant of

the nanometer sized barium titanate particles.

2. Experimental

Perfluoro alkoxy (PFA) / BT nanocomposite films were prepared by spray

deposition. Spraying is a convenient and economical manufacturing method for70

producing high quality polymer-ceramic composite films for various applications

such as capacitors. The spraying system comprises a pneumatic nozzle, syringe

pump and compressed air supply with minimum equipment maintenance re-

quired and is suitable for efficient small quantity spraying when compared with

spin-coating which causes significant waste of precursor materials [23]. This75

spray deposition technique has been shown in previous work [24, 25] to be

highly effective in producing small area films for energy storage demonstrators.

In this work, the technique was developed further by scaling up to produce large

area films (160 mm x 160 mm) with thicknesses exceeding 100 µm while still

maintaining good surface quality. The thermoplastic fluoropolymer perfluoro80

alkoxy (PFA) was chosen as the polymer matrix because of its good chemical

resistance, high temperature resistance (due to a high melting point of over 300

◦C) and stable dielectric performance at microwave frequencies [26].

2.1. Materials

PFA from 3M Dyneon was chosen as the polymer matrix for spraying, and85

has a melting temperature of 306 ◦C. It is available as a 50 vol% PFA water
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suspension containing PFA particle sizes around 80 nm. BT particles (300 nm,

99.9 %, tetragonal) supplied by Nanoamor were used as the ceramic filler. The

choice of most suitable particle size and phase for the BT particles was made

with the aim of providing a high dielectric constant filler material that is also90

compatible with the spraying process. The spraying process requires stable

suspensions which we achieved by dispersing BT particles homogeneously in

PFA water suspensions. Big BT particles or poor stability of the composite

suspensions caused blockage in the spray nozzle tip - a 0.023 inch diameter

orifice. Therefore, BT particles as small as possible would be preferred, but95

taking into consideration that peak dielectric constant values were reported for

BT ceramics with grain size 700-800 nm with the dielectric constant gradually

decreasing for smaller grain size[27]. When the grain size is less than 100 nm,

the crystal phase of BT changes from tetragonal to cubic at room temperature

and hence shows a much lower dielectric constant. Thus the BT particle sizes100

should be as close to 700-800 nm as possible and be tetragonal phase to obtain

highest dielectric constant. Considering these two opposing requirements, we

chose the smallest BT particles we could source that had the tetragonal phase,

which are 300 nm. Dispex A40 (BASF, Germany), an ammonium salt of acrylic

polymer, was used as a dispersant to help stabilise the aqueous PFA and BT105

suspension.

2.2. Spray deposition

. PFA/BT composite films with filler to matrix volume ratios up to 40% (cor-

responding to BT volume percent of 28.6%) and with thickness ranging from a

few µm to over 100 µm were prepared by spraying using pneumatic atomizing110

nozzles. A diagram of the spraying process is shown in Fig. 1. Composite

suspensions were prepared by mixing the PFA water suspension, BT particles

and 2wt% of Dispex A40 under ultrasonication for ∼1 h. The well-mixed com-

posite suspension was subsequently fed into the spray nozzle by a syringe pump

driven at a controllable, constant speed. The liquid droplets were atomised at115

the nozzle outlet by compressed air at high pressure. The atomisation formed

5



Figure 1: Illustration of the spraying deposition process

a cone of fine mist that deposited on the surface of glass substrates sitting on a

mobile hotplate preheated to 95 ◦C. The hotplate moved under computer con-

trol according to a pre-set pattern in the x-y plane. The height of the spraying

nozzle above the hotplate of between 10 - 15 cm, atomisation pressure of typ-120

ically 300 kPa, suspension feed rate of 2 - 4 mL/min and the hotplate moving

pattern were all carefully optimised to obtain good quality films. Quality was

determined by a consistent thickness, color and surface roughness across the full

area of the film. Following thorough drying on the hot plate, sprayed compos-

ites were then melt-processed in a belt furnace at 380 ◦C for 30 min. For low125

frequency measurements, premetalised (Au) glass slides were used as the spray

substrate and another layer of Au was deposited on top of the composite film

through shadow masks. For higher frequency measurements, 200 mm x 200 mm
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glass plates were used, and the composite films were carefully removed from the

glass substrates by submerging the whole sample in water until the composite130

films detached spontaneously from the glass substrate, followed by drying.

2.3. Hot pressing

Maximum 160 mm x 160 mm composite films with thickness ∼ 100 µm were

cut into 40 mm x 40 mm square pieces and stacked. The stacks were placed in

a heated die within a specially designed hot press with an initial load of 25 Kgf135

evenly applied. The bonding process was carefully monitored by temperature

measurements from thermocouples inserted in close proximity to the composite

films and sandwiched inside the stack itself, together with displacement mea-

surements of the pressurizing ram from a linear variable displacement transducer

(LVDT) to avoid excessive heating or pressing. The sample was heated to just140

above the PFA melting temperature of 306 ◦C and held for 5 - 10 min under

pressure before the heaters were switched off and the sample cooled naturally.

Approximately 16 layers of film were used to form a block of thickness 2 mm,

suitable for the high frequency waveguide measurements.

2.4. Characterisation145

The crystal structure of the BT particles was confirmed by X-ray diffrac-

tion using a Philips PW1729 θ - 2θ diffractometer. The particle size of BT

was observed under SEM and analysed with a Zetasizer Nano ZS (Malvern In-

struments). As-received BT particle / water suspensions and de-agglomerated

BT particle water suspensions after ultrasonication with 2 wt% of Dispex A40150

dispersant for ∼ 1 h were prepared and examined by Zetasizer. Zeta potentials

were also measured as an important indicator of the stability of the suspensions.

The microstructures of the sprayed films with various loadings were exam-

ined by scanning electron microscopy (SEM) in a JEOL 840F. Samples were

prepared by submerging the glass slide and the composite film in liquid nitro-155

gen, then snapping instantly after removal from liquid nitrogen to achieve brittle

fracture cross-sections. More elaborate sample preparation designed to better
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reveal particle agglomeration by eliminating interference from the surface tex-

ture of the polymer matrix was achieved by microtomy with a diamond blade

in a Leica Ultracut E microtome. This provided a smooth cross-section of the160

composite surfaces in which agglomerates could be more easily resolved. The

film cross-sections were coated with 2.5 nm thick platinum layers before SEM

observation.

Thermogravimetric analysis was also conducted on the composite films to

assess the effect of filler materials on composites’ thermal stability. The mass165

residue of the composites following high temperatures is also provided as a

complementary study of the real composition of composite films at milligram

scale.

For low frequency dielectric characterisation, capacitance measurements up

to 1 MHz were conducted on a Solartron SI 1260 Impedance Analyzer. Sprayed170

films were sandwiched between two Au electrodes to create mini-capacitors. For

each film, 4 to 14 measurements were taken at various positions. Calculation of

the dielectric constant (εr) and loss tangent (tan δ) values required measurement

of the area of each mini-capacitor, and the thickness of the film using a Dektak

surface profilometer.175

High frequency measurements (from 12 GHz to 18 GHz) were carried out

using a two-port Vector Network Analyser (VNA, HP 8510C Agilent) and a

standard Ku band waveguide with sample dimensions of 15.8 mm x 7.9 mm

x 2 mm connected to the VNA with phase-stable cables. Block samples cut

into these exact dimensions were carefully press-fitted into the waveguide. The180

complex relative permittivity and relative permeability were extracted from the

measured S-parameters using the Nicolson-Ross-Weir method [28].

3. Results and Discussion

3.1. Size and crystal structure characterisation for BT particles

SEM image of as-received BT powders particle size measurements before and185

after the deagglomeration process measured by Zetasizer are shown in Figure 2.

8



Particle agglomeration is seen in the SEM image. The average suspension par-

ticle diameter in Zetasizer measurement was 1.5 µm for as-received BT powders

which reduced to 420 nm when the combination of dispersant and ultrasonica-

tion was applied. A corresponding zeta potential ζ = -25.5 mV was also obtained190

by Zetasizer measurement which suggested good stability of the dispersion [25].

There is a practical limit to the BT loading in the spraying technique because

addition of the particles increased the viscosity of the composite suspension.

Very viscous composite suspensions cause blockage to the nozzle tip and dras-

tically increase the surface roughness of the final composite films. A rough film195

surface with micro-holes or cracks results in short-circuits between the bottom

and top electrodes over a critical frequency. In this study, the highest practi-

cable BT:PFA volume ratio was 0.4 beyond which good quality films could not

be achieved.
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Figure 2: SEM image of as-received BT powders (top) and Zetasizer measurements for as-

received BT powder water suspension and de-agglomerated BT powder water suspension after

ultrasonication with dispersant Dispex A40 (bottom)

To enhance the overall dielectric constant of our composites, tetragonal200

nanometer sized BT particles were chosen, and the tetragonal phase was con-
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firmed from the XRD results in Figure 3. All the resulting peaks shown in

which could be assigned to the tetragonal form of BaTiO3, with the characteris-

tic splitting of (200) peaks visible in the inset around 2θ = 45◦. It is well known

that dielectric properties of BT powders are dependent on both crystal struc-205

ture and particle size [1, 29]. Transition from the tetragonal to cubic structure

reduces the permanent dipole and dielectric constant of BT, while particle size

reduction would induce this phase transition at a lower temperatures.

10 20 30 40 50 60 70 80

0

100

200

300

400

500

600

700

44 45 46
0
20
40
60
80
100

In
te

ns
ity

 (c
ps

)

2 (o)

(1
00

)

(1
10

)

(1
11

)

(1
02

)

(1
12

)

(2
02

)

(2
12

) (1
03

)

(3
11

)

(2
00

)+
(0

02
)

 

 

 

2 (o)

In
te

ns
ity

 (c
ps

) (0
02

)
(2

00
)

Figure 3: XRD plots of as-received barium titanate nano-powders. The main figure is the

overall scan from 10 to 80◦, and the insert of a detailed scan around 45◦ confirms the charac-

teristic splitting of the (200) and (002) peaks for tetragonal crystal symmetry.

3.2. SEM characterisation of PFA/BT composite films

BT particle distribution in the PFA / BT composite films were examined210

by SEM as shown in Figure 4. Although generally there was judged to be an

acceptable dispersion of the BT particles, pull-out of polymer chains during the

fracture process prevented clear recognition of BT particle agglomerates. More-

over, for large area films or thick film samples, the method of freeze fracture

samples for cross-sectional analysis was no longer feasible due to weak attach-215

ment between the film and the glass substrate. However, in the SEM images of

the microtome-prepared cross-sections of composite films, any BT agglomerates

could be easily revealed. An example of poor BT distribution is seen in 4 (e)

and (f) for a composite with BT:PFA volume ratio of 0.1 (corresponding to BT

volume percent of 9.1%), where BT clusters with diameters as large as 5 mi-220

crons could be identified. Localised large particle agglomerates would result not
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only in patchy dielectric performance but also sedimentation of the composite

suspension during the spraying process when large areas (long spraying times)

were required. After introducing high power ultrasonication combined with the

application of Dispex A40, the BT distribution was much improved and the225

composite films were almost agglomerate-free.

(a) (b)

(c) (d)

(e) (f)

Figure 4: SEM images of freeze-fractured cross-sections of PFA-BT composite films at (a)

BT:PFA (v/v)= 0.05 (BT volume fraction of 0.048) (b) BT:PFA (v/v)= 0.1 (BT volume

fraction of 0.091) (c) BT:PFA (v/v)= 0.2 (BT volume fraction of 0.167) (d) BT:PFA (v/v)=

0.3 (BT volume fraction of 0.231);(e) and (f) are microtome-prepared cross-sections of BT:PFA

(v/v)= 0.1 composite film at different magnifications

3.3. Thermogravimetric analysis

To test the thermal stability of the composite films, thermogravimetric anal-

yses of samples with varying compositions were conducted on a Perkin Elmer

Diamond TG/DTA machine (Figure 5). PFA started to decompose at ca. 400230
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Figure 5: TG/DTA measurements of composite films with different compositions. The num-

bers at the end of each data line are the measured residual mass after removal of the PFA

◦C and was almost completely removed from the system above 600 ◦C. The

nominal weight percentages of BT in the tested composite samples are 0, 12.0,

21.4, 35.2, 52.1 respectively compared to what were marked in the graph as

the measured results. There was only minor disagreement between the TGA

measurements of residual BT weight fraction and the nominal compositions,235

which can be explained by variation due to the very small sample size tested in

the TGA measurements (∼ 2 mg), possible particle agglomeration and powder

sedimentation during spraying.

3.4. Low frequency dielectric properties characterisation

Several capacitance measurements were taken on each film, and the typical240

dielectric performance of PFA / BT composite films with increasing ceramic

loading between 100 Hz and 1 MHz is shown in Figure 6. There was rel-

atively stable dielectric performance over the frequency range for films with

lower BT loadings. As the BT:PFA volume ratio increased, the decrease in

dielectric constant becomes obvious towards 100 Hz. A similar relaxation ef-245

fect for titanate-polymer composites between 10 Hz and 1 kHz was reported

in [30]. The dielectric constant and loss tangent measurements at 10 kHz for

composite films with different BT loadings are compared in Figure 6 where each

data point is an average of 4-14 measurements taken on each film sample, and

the standard deviation of measurements taken on each film are plotted as error250

bars. The scattering in measurements taken on each film can be significant
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Figure 6: Dielectric measurements at low frequencies for PFA / BT composite films with

varying volume ratios of barium titanate (left); dielectric constant and loss tangent of PFA /

BT composite films at 10 kHz plotted against BT volume fraction and fitted using Lichtenecker

equation (right)

as the composite films get denser indicating that the distribution of BT on a

single film is not completely uniform. Some variation in the dielectric measure-

ments from film to film can also be observed, particularly for composite films

with a BT:PFA volume ratio of 0.1 (corresponding to BT volume percent of255

9.1%), which might be related to the sedimentation effects during spraying as

discussed before. Possible factors that might contribute to the reproducibility

of measurements include composition variations during the spraying process re-

lated to suspension rheology and powder sedimentation, errors in composition

calculations using estimated weight percentages for PFA water suspensions and260

non-uniform thicknesses of films. The Lichtenecker or logarithmic mixing law

[22] shown in Equation 1 was used to fit the averaged data points (with no

weighting applied) until a Chi-Square tolerance of 1E-9 was reached. εm was

held constant at 2.5 and εf was varied to achieve the best-fit.

logεeff = flogεf + (1 − f)logεm (1)

where εeff , εf and εm represent the dielectric constant of the composite, the265

filler, and the matrix respectively and f is the volume fraction of the filler. It

is worth mentioning that in addition to Lichtenecker mixing law, a few other

common laws including Maxwell-Garnett, Bruggeman, Jayasundere-Smith, Ya-
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mada were tried and the Lichtenecker mixing law was the only one that gave

a converged fitting. The estimated dielectric constant for the BT nanometer270

sized particles based on the converged fitting was 895. This value is reasonable

for this particle size in this frequency range compared to the normally quoted

dielectric constant for bulk barium titanate of 2000 [1, 31], but higher than some

other reported estimates: for example Cho et al. estimated 282 for 0.25 µm BT

particles for epoxy/BT composites [17].275

3.5. High frequency dielectric properties characterisation

For the higher frequency waveguide measurements, 1-2 composite blocks for

each composition were prepared as discussed above. When examined by optical

microscopy, typical cross-sections showed a compact structure free of air gaps,

but with residual layer boundaries visible after pressing which proved that the280

hot pressing method is adequate in producing reliable block samples. Waveguide

measurements of these PFA / BT block samples with various loadings over

the frequency range 12 to 18 GHz gave a stable dielectric performance with

no significant dielectric relaxation. The dielectric properties at 15 GHz for

composites with various loadings are compared in Figure 7, and best-fitting of285

the data again using the Lichtenecker mixing law gave an estimated dielectric

constant of the BT particles of 517. This simple pressing process could be

readily applied to building graded-index layered structures for thermoplastic

polymer-based composites.

A comparison of the dielectric constant of thin sprayed composite films at290

10 kHz and the same materials hot-pressed into the block format at 15 GHz is

given in Figure 8. There was a significant difference in the dielectric constant of

the composites in the low frequency and high frequency measurements, which is

consistent with previous reports of bulk BT behaviour. The dielectric constant

drop of PFA/BT composites at high and low frequencies could be related to the295

change in polarisation mechanisms. At low frequencies both atomic and dipolar

polarisations contribute to the dielectric constant, whereas at high frequencies

only atomic polarisation occurs [32]. It is thus understandable that there is a
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Figure 7: Dielectric measurements at high frequencies for PFA / BT composite blocks with

varying volume ratios of barium titanate (left); dielectric constant and loss tangent of PFA

/ BT composite films at 15 GHz plotted against BT volume fraction and fitted using Lichte-

necker equation (right)
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Figure 8: Comparison of low frequency and high frequency dielectric constants of sprayed

PFA-BT composite films

reduction in dielectric constant of our composites by about 25% in the lower and

higher frequency ranges. The variations in measured dielectric constant from300

samples of nominally identical loading are most likely to be from variations in

actual loading (i.e, a systematic error from the fluctuations in the spray process

as mentioned above) which are more severe in the low frequency measurements

on single layer films than they are in the composite blocks made from many

layers which averages out the sheet-to-sheet variations.305
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4. Conclusions

Dielectric measurements of sprayed PFA / BT composite films at low fre-

quencies (kHz) and high frequencies (GHz) were compared in this work. Mea-

surements of the composite films at high frequencies (12-18 GHz) were achieved

by a well-controlled hot pressing process to create block samples suitable for310

insertion into a waveguide. The Lichtenecker mixing rule was used to fit the

data and to estimate the dielectric constant of BT particles in the different fre-

quency ranges, and yielded 895 and 572 at 10 kHz and 15 GHz, respectively.

These estimated dielectric constants are generally higher than other people’s

estimation from composite data using mixing rules. There was a reduction of315

about 25 % in the effective dielectric constant of the PFA / BT composites at

high frequency measurements compared to low frequency measurements. This

should allow extrapolation in the future of results from convenient low frequency

measurements to the high frequency range where many important applications

of high k materials are being developed.320
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