23 research outputs found

    Experimental Quantum Networking Protocols via Four-Qubit Hyperentangled Dicke States

    Full text link
    We report the experimental demonstration of two quantum networking protocols, namely quantum 1->3 telecloning and open-destination teleportation, implemented using a four-qubit register whose state is encoded in a high-quality two-photon hyperentangled Dicke state. The state resource is characterized using criteria based on multipartite entanglement witnesses. We explore the characteristic entanglement-sharing structure of a Dicke state by implementing high-fidelity projections of the four-qubit resource onto lower-dimensional states. Our work demonstrates for the first time the usefulness of Dicke states for quantum information processing.Comment: 4 pages + Supplementary Information, 6 figures; revised version: Accepted for publication in Phys. Rev. Let

    Genuine Counterfactual Communication with a Nanophotonic Processor

    Full text link
    In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. The first suggested protocol not only required thousands of ideal optical components, but also resulted in a so-called "weak trace" of the particles having travelled from Bob to Alice, calling the scalability and counterfactuality of previous proposals and experiments into question. Here we overcome these challenges, implementing a new protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly-efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of genuinely trace-free counterfactual communication, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, with neither post-selection nor a weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.Comment: 6 pages, 4 figure

    Cross-verification of independent quantum devices

    Full text link
    Quantum computers are on the brink of surpassing the capabilities of even the most powerful classical computers. This naturally raises the question of how one can trust the results of a quantum computer when they cannot be compared to classical simulation. Here we present a verification technique that exploits the principles of measurement-based quantum computation to link quantum circuits of different input size, depth, and structure. Our approach enables consistency checks of quantum computations within a device, as well as between independent devices. We showcase our protocol by applying it to five state-of-the-art quantum processors, based on four distinct physical architectures: nuclear magnetic resonance, superconducting circuits, trapped ions, and photonics, with up to 6 qubits and 200 distinct circuits

    Engineering a C-Phase quantum gate: optical design and experimental realization

    Full text link
    A two qubit quantum gate, namely the C-Phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the Phased Dicke states are also discussed in detail.Comment: accepted for publication on EPJ

    Photonic quantum information processing: a review

    Full text link
    Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.Comment: 36 pages, 6 figures, 634 references. Updated version with minor changes and extended bibliograph
    corecore