1,945 research outputs found

    Excitation of methyl cyanide in the hot core of Orion

    Get PDF
    The excitation of CH_3CN in the hot core of Orion is examined using high-sensitivity observational data at 1.3 mm. Observed line fluxes are analyzed by means of multilevel statistical equilibrium (SE) calculations which incorporate current theoretical values of the collisional excitation rates. The analysis is applied to both optically thin models of the hot core region and models with significant optical depths. Trapping is found to play a critical role in the excitation of CH_3CN. An optically thin analysis yields a kinetic temperature of 275 K and a cloud density of 2 x 10^6 cm^(-3). Unequal column densities are deduced in this case for the two symmetry species: N_A = 1.4 x 10^(14) cm^(-2) and N_E = 2.0 x 10^(14) cm^(-2). The deduced cloud density and temperature are lowered to 1.5 x 10^6 cm^(-3) and 240 K. The model with trapping is favored because of the agreement with measured sizes of the hot core source and the more plausible N_A/N_E ratio. Analysis of radiative excitation in the hot core indicates it is unlikely to significantly affect the ground vibrational state populations of CH_3CN. It most likely is significant for excitation of the V_8 band

    Structural perfection of Hg1−xCdxTe Grown by THM

    Get PDF
    The defect structure of single crystals of Hg1-xCdxTe grown by the travelling heater method (THM) has been investigated using X-ray double crystal topography and a chemical etching technique. The structural perfection is found to depend on the ratio of growth and solidus temperature Tg/Ts

    Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A*

    Get PDF
    We report here the detection of circular polarization in the Galactic Center black hole candidate, Sagittarius A*. The detection was made at 4.8 GHz and 8.4 GHz with the Very Large Array. We find that the fractional circular polarization at 4.8 GHz is mc=−0.36±0.05m_c=-0.36 \pm 0.05% and that the spectral index of the circular polarization is α=−0.6±0.3\alpha=-0.6 \pm 0.3 (mc∝Μαm_c \propto \nu^{\alpha}). The systematic error in mcm_c is less than 0.04% at both frequencies. In light of our recent lower limits on the linear polarization in Sgr A*, this detection is difficult to interpret with standard models. We consider briefly whether scattering mechanisms could produce the observed polarization. Detailed modeling of the source and the scattering medium is necessary. We propose a simple model in which low energy electrons reduce linear polarization through Faraday depolarization and convert linear polarization into circular polarization. Circular polarization may represent a significant new parameter for studying the obscured centimeter wavelength radio source in Sgr A*.Comment: ApJL accepted, 11 pages including 1 figur

    Polarimetric Imaging of the Massive Black Hole at the Galactic Center

    Get PDF
    The radio source Sgr A* in the Galactic center emits a polarized spectrum at millimeter and sub-millimeter wavelengths that is strongly suggestive of relativistic disk accretion onto a massive black hole. We use the well-constrained mass of Sgr A* and a magnetohydrodynamic model of the accretion flow to match both the total flux and polarization from this object. Our results demonstrate explicitly that the shift in the position angle of the polarization vector, seen at wavelengths near the peak of the mm to sub-mm emission from this source, is a signal of relativistic accretion flow in a strong gravitational field. We provide maps of the polarized emission to illustrate how the images of polarized intensity from the vicinity of the black hole would appear in upcoming observations with very long baseline radio interferometers (VLBI). Our results suggest that near-term VLBI observations will be able to directly image the polarized Keplerian portion of the flow near the horizon of the black hole.Comment: 12 pages, 2 figures, Accepted for publciation in ApJ Letter

    The Linear Polarization of Sagittarius A* I. VLA Spectro-polarimetry at 4.8 and 8.4 GHz

    Full text link
    Synchrotron radiation from active galactic nuclei (AGN) is often highly polarized. We present a search for linear polarization with the Very Large Array (VLA) at 4.8 GHz and 8.4 GHz from the nearest AGN, Sagittarius A*. As a part of this study we used spectro-polarimetric data that were sensitive to a rotation measure (RM) as large as 3.5 x 10^6 rad m^-2 at 4.8 GHz and 1.5 x 10^7 rad m^-2 at 8.4 GHz. The upper limit to the linear polarization of Sgr A* over a broad range of RM is 0.2% at both frequencies. We also present continuum observations with the VLA at 4.8 GHz which give an upper limit of 0.1% for RMs less than 10^4 rad m^-2. We conclude that depolarization is unlikely to occur in the Galacter Center scattering medium. However, it is possible for depolarization to occur in the accretion region of Sgr A* if the outer scale of turbulence is small enough. We also consider the implications of a very low intrinsic polarization for Sgr A*.Comment: 16 pages, 3 figures, accepted for publication in the Astrophysical Journal, August 20, 1999, Vol 521 #

    The Linear Polarization of Sagittarius A* II. VLA and BIMA Polarimetry at 22, 43 and 86 GHz

    Full text link
    We present a search for linear polarization at 22 GHz, 43 GHz and 86 GHz from the nearest super massive black hole candidate, Sagittarius A*. We find upper limits to the linear polarization of 0.2%, 0.4% and 1%, respectively. These results strongly support the conclusion of our centimeter wavelength spectro-polarimetry that Sgr A* is not depolarized by the interstellar medium but is in fact intrinsically depolarized.Comment: Accepted for publication in ApJ, 13 pages, 2 figure

    A Black Hole in the Galactic Center Complex IRS 13E?

    Full text link
    The IRS 13E complex is an unusual concentration of massive, early-type stars at a projected distance of ~0.13 pc from the Milky Way's central supermassive black hole Sagittarius A* (Sgr A*). Because of their similar proper motion and their common nature as massive, young stars it has recently been suggested that IRS 13E may be the remnant of a massive stellar cluster containing an intermediate-mass black hole (IMBH) that binds its members gravitationally in the tidal field of Sgr A*. Here, we present an analysis of the proper motions in the IRS~13E environment that combines the currently best available data with a time line of 10 years. We find that an IMBH in IRS 13E must have a minimum mass of ~10^4 solar masses in order to bind the source complex gravitationally. This high mass limit in combination with the absence so far of compelling evidence for a non-thermal radio and X-ray source in IRS 13E make it appear unlikely that an IMBH exists in IRS 13E that is sufficiently massive to bind the system gravitationally.Comment: accepted by AP

    Aperture synthesis observations of the molecular ring in the galactic center

    Get PDF
    Reported are 88 GHz aperture synthesis observations of HCN J=1 yields 0 emission and absorption in the central 5 pc of the Galaxy. The data, taken by the Hat Creek mm-interferometer at 5" to 10" spatial and 4 km/s spectral resolution, show a complete, clumpy ring of molecular gas surrounding the ionized central 2 pc of the Galaxy. The ring is the inner edge of a larger disk extending to about 5 pc. Comparison with sub-mm line data suggests that the HCN 1-0 line is slightly optically thick and originates in subthermally populated gas. The clumpy line emission distribution reflects a combination of hydrogen volume and column density variations. The new data clearly show a close physical relation between the molecular and the ionized gas in the central cavity. The western arc appears to be the ionized inner surface of the molecular ring, and the northern arm and bar may be streamers of ionized gas falling from the ring toward the center. The dominant large scale velocity pattern of the majority of the molecular gas in the inner 5 pc is rotation. No overall radial motion of the ring greater than about 20 km/s is apparent. The rotation is perturbed in several ways; (1) there is a very large local velocity dispersion, (2) the ring shows changes in position angle and inclination (warps), (3) there is a bright, redshifted cloud which appears to be located in the western part of the ring but does not participate in the rotation. These characteristics and the high degree of clumpiness indicate a non-equilibrium configuration of short (less than or approx. 10 to the 4th power to 10 to the 5th power y) dynamical lifetime. The warping and tilting of the structure and the short dynamical lifetime make an accurate determination of equilibrium rotation velocity uncertain

    Warping the young stellar disc in the Galactic Centre

    Full text link
    We examine influence of the circum-nuclear disc (CND) upon the orbital evolution of young stars in the Galactic Centre. We show that gravity of the CND causes precession of the orbits which is highly sensitive upon the semi-major axis and inclination. We consider such a differential precession within the context of an ongoing discussion about the origin of the young stars and suggest a possibility that all of them have originated in a thin disc which was partially destroyed due to the influence of the CND during the period of ~6Myr.Comment: proc. conf. "The Universe Under the Microscope - Astrophysics at High Angular Resolution", 21-25 April 2008, Bad Honnef, German

    Collapse of Uniformly Rotating Stars to Black Holes and the Formation of Disks

    Full text link
    Simulations in general relativity show that the outcome of collapse of a marginally unstable, uniformly rotating star spinning at the mass-shedding limit depends critically on the equation of state. For a very stiff equation of state, which is likely to characterize a neutron star, essentially all of the mass and angular momentum of the progenitor are swallowed by the Kerr black hole formed during the collapse, leaving nearly no residual gas to form a disk. For a soft equation of state with an adiabatic index \Gamma - 4/3 << 1, which characterizes a very massive or supermassive star supported predominantly by thermal radiation pressure, as much as 10% of the mass of the progenitor avoids capture and goes into a disk about the central hole. We present a semi-analytic calculation that corroborates these numerical findings and shows how the final outcome of such a collapse may be determined from simple physical considerations. In particular, we employ a simple energy variational principle with an approximate, post-Newtonian energy functional to determine the structure of a uniformly rotating, polytropic star at the onset of collapse as a function of polytropic index n, where \Gamma = 1+1/n. We then use this data to calculate the mass and spin of the final black hole and ambient disk. We show that the fraction of the total mass that remains in the disk falls off sharply as 3-n (equivalently, \Gamma - 4/3) increases.Comment: 11 pages, 2 figures, 2 tables, AASTeX; accepted to appear in The Astrophysical Journa
    • 

    corecore