1,480 research outputs found

    Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence

    Get PDF
    The rotation curves of low surface brightness galaxies provide a unique data set with which to test alternative theories of gravitation over a large dynamic range in size, mass, surface density, and acceleration. Many clearly fail, including any in which the mass discrepancy appears at a particular length-scale. One hypothesis, MOND [Milgrom 1983, ApJ, 270, 371], is consistent with the data. Indeed, it accurately predicts the observed behavior. We find no evidence on any scale which clearly contradicts MOND, and a good deal which supports it.Comment: Accepted for publication in the Astrophysical Journal. 35 pages AAStex + 9 figures. This result surprised the bejeepers out of us, to

    Continuous topological phase transitions between clean quantum Hall states

    Full text link
    Continuous transitions between states with the {\em same} symmetry but different topological orders are studied. Clean quantum Hall (QH) liquids with neutral quasiparticles are shown to have such transitions. For clean bilayer (nnm) states, a continous transition to other QH states (including non-Abelian states) can be driven by increasing interlayer repulsion/tunneling. The effective theories describing the critical points at some transitions are derived.Comment: 4 pages, RevTeX, 2 eps figure

    Determination of the spin-flip time in ferromagnetic SrRuO3 from time-resolved Kerr measurements

    Get PDF
    We report time-resolved Kerr effect measurements of magnetization dynamics in ferromagnetic SrRuO3. We observe that the demagnetization time slows substantially at temperatures within 15K of the Curie temperature, which is ~ 150K. We analyze the data with a phenomenological model that relates the demagnetization time to the spin flip time. In agreement with our observations the model yields a demagnetization time that is inversely proportional to T-Tc. We also make a direct comparison of the spin flip rate and the Gilbert damping coefficient showing that their ratio very close to kBTc, indicating a common origin for these phenomena

    Smooth HI Low Column Density Outskirts In Nearby Galaxies

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astronomical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-3881/aabbaa.The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H i) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H i at a column density of ∼5 × 10 19 cm -2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H i disks, we study the azimuthally averaged H i column density profiles of 17 nearby galaxies from the H i Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H i emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H i maps. With this method, we improve our sensitivity to outer-disk H i emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H i radial profiles: the alleged signature of ionization by the extragalactic background.Peer reviewedFinal Accepted Versio

    Observational Constraints on the Self Interacting Dark Matter Scenario and the Growth of Supermassive Black Holes

    Full text link
    We consider the consequences of SIDM for a velocity dependent cross section per unit mass. Accretion of SIDM onto seed black holes can produce supermassive black holes that are too large for certain combinations of parameters,which is used to obtain a new constraint on the dark matter interaction. Constraints due to other considerations are presented and previous ones are generalized. The black hole constraint is extremely sensitive to the slope \alpha, of the inner density profile of dark halos. For the most probable value of \alpha=1.3, there exists a narrow range in parameter space, such that all constraints are satisfied. However, the adiabatic compression of the dark halo by baryons as they cool and contract in normal galaxies yields a steeper cusp, \alpha=1.7. This gives a tighter constraint, which would exclude SIDM as a possible solution to the purported problems with CDM in the absence of other dynamical processes. Nevertheless, SIDM with parameters consistent with this stronger constraint, can explain the ubiquity of supermassive black holes in the centers of galaxies. A ``best fit'' model is presented which reproduces the supermassive black hole masses and their observed correlations with the velocity dispersion of the host bulges. Specifically, the fourth power dependence of black hole mass on velocity dispersion is a direct consequence of the power spectrum having an index of n=-2. Although the dark matter collision rates for this model are too small to directly remedy problems with CDM, mergers between dark halos harboring supermassive black holes at high redshift could ameliorate the cuspy halo problem. This scenario also explains the lack of comparable supermassive black holes in bulgeless galaxies like M33.Comment: 30 pages, 6 figures, significant improvements: added new constraint, revised old constraints, changed figure

    Binding Transition in Quantum Hall Edge States

    Get PDF
    We study a class of Abelian quantum Hall (QH) states which are topologically unstable (T-unstable). We find that the T-unstable QH states can have a phase transition on the edge which causes a binding between electrons and reduces the number of gapless edge branches. After the binding transition, the single-electron tunneling into the edge gains a finite energy gap, and only certain multi-electron co-tunneling (such as three-electron co-tunneling for ν=9/5\nu=9/5 edges) can be gapless. Similar phenomenon also appear for edge state on the boundary between certain QH states. For example edge on the boundary between ν=2\nu=2 and ν=1/5\nu=1/5 states only allow three-electron co-tunneling at low energies after the binding transition.Comment: 4 pages, RevTeX, 1 figur

    Hypertension in older patients, a retrospective cohort study

    Get PDF
    Background: It is unknown to what extent General Practitioners (GPs) manage hypertension (HT) differently in older patients, as compared to younger age groups. The purpose of our study was to compare HT management in older patients to younger age groups. Methods: We performed a retrospective cohort study of patients of 159 GP's practices in the Integrated Primary Care Information (IPCI) database. The study period lasted from September 2010 through December 2012. The study population consisted of all patients aged 60 years or older with at least one blood pressure (BP) measurement during the inclusion period, without pre-existent HT, diabetes mellitus (DM) or atherosclerotic cardiovascular disease at time of study start. Study outcomes were a diagnosis of HT within one month after cohort entry and the use of antihypertensive medication within 4 months after cohort entry in HT diagnosed patients. We compared the incidence of outcomes between the age groups, stratified by systolic blood pressure (SBP). Logistic regression analysis was used to assess the influence of age-adjusted SBP Z-scores, age and gender on the outcomes. Results: We included 19,500 patients from 159 GP's practices of whom 1,181 (6.1 %) were newly diagnosed with HT. Corrected for age-adjusted SBP, older patients were less likely to be diagnosed with HT (odds ratio per year age increase 0.98, p < 0.001). Corrected for age-adjusted SBP, no significant effect of age on the probability of treatment in newly diagnosed HT patients was observed (p = 0.82). Conclusions: This study showed that GPs are less inclined to diagnose HT with increasing patient age, but do not withhold treatment when they diagnose HT in older patients

    Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    Get PDF
    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body, rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature, and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly-rising rotation curves

    The Central Mass Distribution in Dwarf and Low Surface Brightness Galaxies

    Get PDF
    We present Halpha rotation curves for a sample of 15 dwarf and LSB galaxies. From these, we derive limits on the slopes of the central mass distributions. Assuming the density distributions of dark matter halos follow a power-law at small radii, rho(r)~r^(-alpha), we find inner slopes in the range 0<alpha<1 for most galaxies. In general, halos with constant density cores (\alpha=0) provide somewhat better fits, but the majority of our galaxies (~75%) are also consistent with alpha=1, provided that the R-band mass-to-light ratios are smaller than about 2. Halos with alpha=1.5, however, are ruled out in virtually every case. To investigate the robustness of these results we discuss and model several possible causes of systematic errors including non-circular motions, slit width, seeing, and slit alignment errors. Taking the associated uncertainties into account, we conclude that even for the 25% of the cases where alpha=1 seems inconsistent with the rotation curves, we cannot rule out cusp slopes this steep. Inclusion of literature samples similar to the one presented here leads to the same conclusion when possible systematic errors are taken into account. In the ongoing debate on whether the rotation curves of dwarf and LSB galaxies are consistent with predictions for a CDM universe, we argue that our sample and the literature samples discussed in this paper provide insufficient evidence to rule out halos with alpha=1. At the same time, we note that none of the galaxies in these samples require halos with steep cusps, as most are equally well or better explained by constant density cores. (abridged)Comment: 19 pages, accepted for publication in Ap

    Image Analysis and X-Ray Microanalysis in Cytochemistry

    Get PDF
    When cytochemical reaction products are homogeneously distributed within an organelle, point analyses suffice for the quantitative approach. However, quantitative analysis becomes tedious, when the elements in the reaction product are inhomogeneously distributed. Problems arise when elements from two reaction products have to be related to each other, or to endogenous cytological products (ferritin, haemosiderin, calcium, electron dense markers), either topographically or in concentration. When analyzing inhomogeneous/heteromorphical reaction product-containing organelles special attention has to be paid to measure and relate both volume and concentration. In this paper a relative simple structure (eosinophil granules) is chosen to demonstrate that the acquisition of the requested morphometrical plus chemical information and their integration is possible. The following points will be covered to acquire the morphometrical and chemical information: a). How to estimate the total cell cross-sectioned area. b). How to estimate the total cross-sectioned area of all reaction product-containing particles inside that cell. The ratio of these two areas will provide the requested information about the particle volume fraction. By using the X-ray detector in addition: c). How to acquire the chemical information at the requested resolution, within a reasonable total acquisition time d). How to integrate the morphometrical and chemical data per organelle, by matrix analysis in a reduced scan area. e). How to acquire quantitative chemical information, by the use of cross-sectioned standards. f). How to make this acquisition method independent from changes in the instrumental conditions during the acquisition
    corecore