1,288 research outputs found
Metabolic profile of long-distance migratory flight and stopover in a shorebird
Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km flight to their single spring stopover site and thus provide an excellent model in which to determine the energy fuels associated with endurance travel. To this end, we evaluated plasma concentrations of six key metabolites in arriving godwits caught immediately upon landing near their stopover site. Initial metabolite levels were compared with levels after 5 h of inactive rest to determine how flight per se affects energy metabolism. Birds refuelling on the stopover site were also examined. Arriving godwits displayed elevated plasma free fatty acids, glycerol and butyrate, confirming the importance of lipid fuel in the support of extended migratory activity. Furthermore, elevated plasma triglycerides in these birds suggest that fatty acid provisioning is facilitated through hepatic synthesis and release of neutral lipids, as previously hypothesized for small migrants with high mass-specific metabolic rates. Finally, elevations in plasma uric acid suggest that protein breakdown contributes to the support of long-distance movement, to possibly maintain citric acid cycle intermediates, gluconeogenesis and/or water balance
Kinematics in Matrix Gravity
We develop the kinematics in Matrix Gravity, which is a modified theory of
gravity obtained by a non-commutative deformation of General Relativity. In
this model the usual interpretation of gravity as Riemannian geometry is
replaced by a new kind of geometry, which is equivalent to a collection of
Finsler geometries with several Finsler metrics depending both on the position
and on the velocity. As a result the Riemannian geodesic flow is replaced by a
collection of Finsler flows. This naturally leads to a model in which a
particle is described by several mass parameters. If these mass parameters are
different then the equivalence principle is violated. In the non-relativistic
limit this also leads to corrections to the Newton's gravitational potential.
We find the first and second order corrections to the usual Riemannian geodesic
flow and evaluate the anomalous nongeodesic acceleration in a particular case
of static spherically symmetric background.Comment: 31 pages, no figures, discussion of Pioneer anomaly remove
New Developments in the Spectral Asymptotics of Quantum Gravity
A vanishing one-loop wave function of the Universe in the limit of small
three-geometry is found, on imposing diffeomorphism-invariant boundary
conditions on the Euclidean 4-ball in the de Donder gauge. This result suggests
a quantum avoidance of the cosmological singularity driven by full
diffeomorphism invariance of the boundary-value problem for one-loop quantum
theory. All of this is made possible by a peculiar spectral cancellation on the
Euclidean 4-ball, here derived and discussed.Comment: 7 pages, latex file. Paper prepared for the Conference "QFEXT05:
Quantum Field Theory Under the Influence of External Conditions", Barcelona,
September 5 - September 9, 2005. In the final version, the presentation has
been further improved, and yet other References have been adde
Pneumococcal Polysaccharide Vaccine Ameliorates Murine Lupus
Current guidelines encourage administering pneumococcal vaccine Prevnar-13 to patients with lupus, but whether such vaccinations affect disease severity is unclear. To address this issue, we treated 3-month-old MRL-lpr mice, that spontaneously develop a lupus-like syndrome, with Prevnar-13 or vehicle control. After 3 months, we quantified circulating anti-Pneumococcal polysaccharide capsule (PPS) antibodies and signs of disease severity, including albuminuria, renal histology and skin severity score. We also compared immunophenotypes and function of T and B cells from treated and untreated animals. Prevnar-13 elicited the formation of anti-pneumococcal IgM and IgG. Prevnar-13 treated animals showed reduced albuminuria, renal histological lesions, and milder dermatitis compared to vehicle-treated controls. Mitigated disease severity was associated with reduced and increased T follicular helper cells (TFH) and T follicular regulatory cells (TFR), respectively, in Prevnar-treated animals. T cells from Prevnar-13 vaccinated mice showed differential cytokine production after aCD3/aCD28 stimulation, with significantly decreased IL-17 and IL-4, and increased IL-10 production compared to non-vaccinated mice. In conclusion, pneumococcal vaccination elicits anti-pneumococcal antibody response and ameliorates disease severity in MRL-lpr mice, which associates with fewer TFH and increased TFR. Together, the data support use of Prevnar vaccination in individuals with SLE
Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions
A general method is known to exist for studying Abelian and non-Abelian gauge
theories, as well as Euclidean quantum gravity, at one-loop level on manifolds
with boundary. In the latter case, boundary conditions on metric perturbations
h can be chosen to be completely invariant under infinitesimal diffeomorphisms,
to preserve the invariance group of the theory and BRST symmetry. In the de
Donder gauge, however, the resulting boundary-value problem for the Laplace
type operator acting on h is known to be self-adjoint but not strongly
elliptic. The latter is a technical condition ensuring that a unique smooth
solution of the boundary-value problem exists, which implies, in turn, that the
global heat-kernel asymptotics yielding one-loop divergences and one-loop
effective action actually exists. The present paper shows that, on the
Euclidean four-ball, only the scalar part of perturbative modes for quantum
gravity are affected by the lack of strong ellipticity. Further evidence for
lack of strong ellipticity, from an analytic point of view, is therefore
obtained. Interestingly, three sectors of the scalar-perturbation problem
remain elliptic, while lack of strong ellipticity is confined to the remaining
fourth sector. The integral representation of the resulting zeta-function
asymptotics is also obtained; this remains regular at the origin by virtue of a
spectral identity here obtained for the first time.Comment: 25 pages, Revtex-4. Misprints in Eqs. (5.11), (5.14), (5.16) have
been correcte
Probing the quantum-gravity realm with slow atoms
For the study of Planck-scale modifications of the energy-momentum dispersion
relation, which had been previously focused on the implications for
ultrarelativistic (ultrafast) particles, we consider the possible role of
experiments involving nonrelativistic particles, and particularly atoms. We
extend a recent result establishing that measurements of "atom-recoil
frequency" can provide insight that is valuable for some theoretical models.
And from a broader perspective we analyze the complementarity of the
nonrelativistic and the ultrarelativistic regimes in this research area.Comment: LaTex, 13 page
- …