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Current guidelines encourage administering pneumococcal vaccine Prevnar-13 to

patients with lupus, but whether such vaccinations affect disease severity is unclear.

To address this issue, we treated 3-month-old MRL-lpr mice, that spontaneously

develop a lupus-like syndrome, with Prevnar-13 or vehicle control. After 3 months, we

quantified circulating anti-Pneumococcal polysaccharide capsule (PPS) antibodies and

signs of disease severity, including albuminuria, renal histology and skin severity score.

We also compared immunophenotypes and function of T and B cells from treated

and untreated animals. Prevnar-13 elicited the formation of anti-pneumococcal IgM

and IgG. Prevnar-13 treated animals showed reduced albuminuria, renal histological

lesions, and milder dermatitis compared to vehicle-treated controls. Mitigated disease

severity was associated with reduced and increased T follicular helper cells (TFH) and

T follicular regulatory cells (TFR), respectively, in Prevnar-treated animals. T cells from

Prevnar-13 vaccinated mice showed differential cytokine production after aCD3/aCD28

stimulation, with significantly decreased IL-17 and IL-4, and increased IL-10 production

compared to non-vaccinated mice. In conclusion, pneumococcal vaccination elicits

anti-pneumococcal antibody response and ameliorates disease severity in MRL-lprmice,

which associates with fewer TFH and increased TFR. Together, the data support use of

Prevnar vaccination in individuals with SLE.

Keywords: lupus, prevnar, vaccination, TFH, TFR

INTRODUCTION

Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease with complex
genetic and immune system pathogenic mechanisms operative throughout the disease course (1, 2).
While several therapeutic targets have been identified, treatment of the most severe manifestations
(e.g., lupus nephritis) consists of glucocorticoids and immunosuppressive/cytotoxic agents that
have significant side effects and risks (3–5). Long-term use of immunosuppressive medications
is a major risk factor for infection-related morbidity and mortality in SLE patients (6, 7).
Bacteria are the most common pathogens seen, with Streptococcus pneumoniae being the most
frequent microorganism involved in respiratory tract infections (8–11). Accordingly, international
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guidelines recommend pneumococcal vaccine administration to
the majority of patients with SLE (12).

Despite recommendations, vaccination rates in patients with
SLE are only 50–60% (13–15). Initial concerns centered on
questions of vaccine efficacy, but numerous studies over the
past 30 years confirm that vaccinations against Influenza
and Pneumococcus are equally efficacious in patients with
SLE (16). Pneumococcal conjugate vaccine (PCV; Prevnar-
13) contains polysaccharides from the 13 most common
pathological pneumococcal serotypes and is recommended for
immunosuppressed individuals, including patients with SLE.
Additional concerns that anti-pneumococcal vaccination might
worsen disease severity have proven obstructive to enacting
guideline recommendations. Although a study of 24 SLE patients
showed no significant change in autoantibody titers or C3/C4
serum levels 2 months after anti-pneumococcal vaccination (17),
onset of SLE has been described after immunization against
tetanus (18, 19), hepatitis B (18, 20), and other vaccines (21),
providing cause for concern.

Several mechanisms have been proposed to account for
induction of post-vaccination autoantibody-mediated disease.
Molecular mimicry of host structures by pathogens is a well-
known theory offering an explanation for initial activation of
autoreactive B cells that does not require autoantigen priming.
Furthermore, it was demonstrated that normal post-vaccination
anti-pneumococcal antibody responses in healthy individuals can
express lupus-associated anti-DNA idiotypes (22). Similarly, a
high percentage of anti-bacterial antibodies against Streptococcus
pneumoniae produced in patients with lupus are capable of
binding double-stranded DNA (23). These findings are cause for
concern despite official recommendations.

Conversely, anti-pneumococcal vaccine may also exert anti-
inflammatory effect. While polysaccharides in Prevnar vaccine
elicit T cell independent B cell responses, the vaccine is
conjugated to Diphtheria CRM197 protein, producing T cell
dependent responses, as well (24, 25). In a murine model of
allergic rhinitis and allergic airway disease it was shown that
conjugated pneumococcal vaccine regulated allergen-specific
TH2 responses and induced regulatory T cells (TREG) (26).
Similarly capsular polysaccharide A (PSA) from Bacteroides
fragilis was shown to play an important role in regulating
demyelination in experimental allergic encephalomyelitis, an
animal model of multiple sclerosis (27).

Despite justified concerns preventing guideline enaction,
mechanistic studies investigating the effect of Prevnar-13 on
immune function in SLE are lacking. To address this issue, herein
we report effects of Prevnar-13 on immunological and clinical
parameters of the lupus-like disease occurring in MRL-lpr mice.

MATERIALS AND METHODS

Mice
MRL-Faslpr (MRL-lpr) mice were purchased from The Jackson
Laboratory (Bar Harbor, ME). Animals were housed at Icahn
School of Medicine at Mount Sinai (New York, NY). Study
protocols were approved by the Institutional Animal Care and
Use Committee at Icahn School of Medicine at Mount Sinai.

Procedures
Twelve-week-old MRL-lpr male mice were injected with vehicle
(PBS) or Prevnar-13 (pneumococcal 13-valent conjugate vaccine
injection, suspension,Wyeth LLC, Pfizer Inc, NY) in a single dose
of 50 µl/per mouse, i.p., and sacrificed after 12 weeks. In selected
experiment, mice were also given mycophenolate mofetil (MMF;
0.563%) added to standard chow (28) for the entire duration of
the experiment (months of age 3–6).

Pneumococcal Specific Indirect ELISA
Peripheral blood was collected through retro-orbital blood draw
before vaccination with Prevnar, and after sacrifice by cardiac
puncture. Serum was then isolated from the peripheral blood and
analyzed for anti-PPS IgM and IgG antibodies. Serumwas diluted
to 1:100 in PBS and transferred to 96 well ELISA plates coated
with 10µg/mL per well of polysaccharides. ELISA was then
carried out according to the procedure described in the WHO
guidelines for PPS ELISA (https://www.vaccine.uab.edu/uploads/
mdocs/ELISAProtocol(007sp).pdf) with somemodifications. The
goat anti-murine IgM antibody used to detect PPS IgMby custom
indirect ELISA was purchased from Jackson ImmunoResearch
(115–006-020; West Grove, PA). The anti-murine IgG1 kappa
antibody used to detect PPS IgG by custom indirect ELISA was
purchased from Sigma-Aldrich (M7894; St. Louis, MO).

Assessment of Dermatitis
MRL-lpr mice develop inflammatory skin lesions on the
forehead, ears and dorsum of the neck, which were scored
on a scale of 0–3, where 0 = no visible skin changes, 1=
minimal hair loss with redness and a few scattered lesions, 2 =

redness, scabbing, and hair loss with a small area of involvement,
and 3 = ulcerations with an extensive area of involvement as
described previously (29).

Renal Histology
After confirmation of stage 3 anesthesia, mice were transcardially
perfused with periodate-lysin-paraformaldehyde fixate at 4% in
phosphate buffered saline (PBS), and the kidneys were dissected
out. Kidney samples were either frozen in Optimal Cutting
Temperature compound (Tissue Tek O.C.T., Sakura, CA) or
fixed in 10% formalin and then embedded in paraffin.

Light Microscopy
Mice kidneys were cut and stained with Periodic acid-Schiff
(PAS) staining and subsequently were evaluated by a renal
pathologist. Lesions were scored according to the National
Institutes of Health (NIH) activity and chronicity index adapted
by the International Society of Nephrology/Renal Pathology
Society classification for lupus nephritis (30). Scoring system
is based on glomerular histopathological changes. The scoring
criteria include these findings: endocapillary hypercellularity,
neutrophils/karyorrhexis, fibrinoid necrosis, wire loop lesions
and/or hyaline thrombi, cellular/fibrocellular crescents, and
interstitial inflammation. A scale from 0 to 3 is used
corresponding to how many glomeruli are affected, in which no
lesion= 0, < 25% of glomeruli= 1, 25% – 50% of glomeruli= 2,
or > 50% of glomeruli= 3.
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Immunofluorescence Analysis in Renal
Tissue
Samples were frozen in O.C.T. compound. For staining, 5µm
thick cryosections were incubated with PBS for 5min then with
blocking solution containing PBS, 2% bovine serum albumin,
2% fetal bovine serum, and 0.2% fish gelatin for 30min at
room temperature (RT). For renal tissue markers, the following
antibodies were used: rat anti-mouse C3b (1:50; Hycult Biotech,
Wayne, PA) incubation at 4◦C overnight followed by indirect
staining with secondary antibody (goat anti-rat Alexa fluor -
488) 1 h at RT; or rat anti-mouse IgG-FITC antibody (1:50;
eBioscience, SanDiego, CA) incubation at 4◦C overnight. At least
65 glomeruli/section for each animal were randomly acquired
using fluorescence non-confocal laser scanning microscopy
(Zeiss AxioImager Z2M with ApoTome.2). Surface antibody
expression was estimated by constructing a contour mask on the
merged image. Software ImageJ was used to quantify C3b and
IgG staining intensity.

Urine Albumin/Creatinine
Urine creatinine was quantified using commercial kits from
Cayman Chemical (Ann Arbor, MI). Urine albumin was
determined using a commercial assay from Bethyl Laboratory Inc
(Houston, TX). Urine albumin excretion was expressed as the
ratio of urine albumin to creatinine (A/C).

Splenic T and B Lymphocyte Cytokines
Single cell suspensions of splenic lymphocytes were separated
using EasySep negative selection kits from Stem Cell
Technologies (Vancouver, BC): T cell kits enriched CD3+

cells and B cell kits enriched CD19+ cells. CD3+ T cells were
stimulated with Dynabeads Mouse T-activator CD3/CD28
(Invitrogen) in a 1:1 bead-to-cell ratio, and isolated CD19+ B
cells were stimulated with 1µg/mL of TLR7/8 agonist R848
(InvivoGen) or 20 ng/mL of LPS-EB (InvivoGen, San Diego,
CA). Supernatants were collected after 1 day for T cells and after
5 days for B cells. Cytokine quantification of IL-4 (R&D Systems,
MN), IFN-γ (BD Biosciences, CA), IL-17A (eBioscience),
IL-10 (BD Biosciences), TNF-α (BD Biosciences), and IL-6
(R&D Systems) were carried out by sandwich ELISA per
manufacturer’s instructions.

Flow Cytometry
We used standard approaches for surface and intracellular
staining as published (31). For surface staining, we used
PE-Cy7 and BV510-anti-CD4 (clone RM4–5 and GK1.5
respectively), PE-Cy7-anti-CD8 (clone RPA-T8); FITC-anti-
CD25 (clone 15F9); biotinylated anti-CXCR5 followed by Pacific
Blue streptavidin, PerCP-Cy5.5-anti-TCRb (clone H57–597),
PE-anti-ICOS (clone 15F9), PE-Cy7-anti-PD-1 (clone RMP1–
30), PerCP-Cy 5.5-anti-B220 (clone RA 3–6 B2), APC-Cy7-
anti-IgD (clone 11–26c), PE-Cy7-anti-IgM (clone eB121–15F9),
PE-anti-FAS (clone Jo2), FITC-anti-GL7 (clone Ly-77). For
intracellular staining, we used APC and FITC-anti-FoxP3 (clones
MF23 and FJK-16S). All these antibodies were obtained from
BD Pharmingen.

Data were acquired (10,000 to 100,000 events) on a three-laser
Canto II flow cytometer (BD Biosciences) and analyzed using
FlowJo (https://www.flowjo.com) software.

Statistical Analyses
Comparisons of continuous variables between two groups were
analyzed by t-tests. For histological score comparisons, we used
Wilcoxon test. Two-way repeated measures ANOVA test was
used for multiple comparisons among treatment groups. P-
values < 0.05 were considered significant. All statistical analyses
were performed using GraphPad Prism (version 8 for Windows,
GraphPad Software, Inc.).

RESULTS

Prevnar-13 Vaccination Promotes an
Anti-Pneumococcal IgG Response in
MRL-lpr Mice
SLE, and medications used to treat it, may prevent effective
vaccination responses. To test this, we injected 12-week-old
MRL-lpr mice with Prevnar-13 or PBS as control. We quantified
anti-PPS specific IgM and IgG antibodies 12 weeks later
(Figure 1A). Anti-PPS IgM and IgG antibody responses were
detected in all vaccinated mice (Figures 1B,C) while none were
seen in control mice. To determine how immunosuppression
affects antibody responses in SLE, we vaccinated MRL-lpr mice
receiving mycophenolate mofetil (MMF), a commonly used
treatment in human SLE. PPS-specific antibody levels in MMF
treated mice were similar to those in mice receiving vaccine
alone and significantly higher than in unvaccinated controls
(Figures 1B,C). Together, these data show that Prevnar-13
vaccination elicits an anti-pneumococcal IgM and IgG response
in MRL-lpr mice even under MMF immunosuppressive therapy.

Prevnar-13 Vaccination Reduces
Lymphadenopathy in MRL-lpr Mice
We next determined whether Prevnar-13 vaccination affects
autoimmune disease in lymph nodes, spleen and skin of
MRL-lpr mice. Similar to many SLE patients with active
disease, MRL-lpr mice spontaneously develop splenomegaly
and lymphadenopathy. The incidence and severity of
lymphadenopathy and splenomegaly and total number of
splenocytes were reduced in vaccinated MRL-lpr mice compared
to control mice (Figures 1D,E).

Prevnar-13 Vaccination Ameliorates Lupus
Dermatitis and Nephritis
Worsening disease severity, including cutaneous and renal
disease, is the most serious concern preventing widespread
vaccination of SLE patients. Cutaneous lupus manifestations
in the MRL-lpr strain include facial rash, lesions of the back
and neck, ulceration and necrosis of the ears. We quantified
development of skin lesions in MRL-lpr mice vaccinated with
Prevnar-13 and in vehicle-treated ones. The incidence and
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FIGURE 1 | Prevnar-13 vaccination promotes an anti-pneumococcal IgG response and reduces lymphocyte numbers in MRL-lpr mice. Twelve-week-old MRL-lpr

mice were given intraperitoneal injection with Prevnar-13 or vehicle control (A) with or without mycophenolate mofetil (MMF). Twelve weeks later, we measured serum

anti-pneumococcal polysaccharide (anti-PPS) IgM (B) and IgG (C) levels. In a separate set of experiments, we treated animals with Prevnar or vehicle (no MMF) and

we sacrificed them for quantification of disease severity and immunological studies. Representative pictures of lymph nodes and spleens (D) and splenocyte number

(E) in Prevnar-13 or vehicle-treated MRL-lpr mice. Data are presented as mean ± SEM. They represent a total of 5 mice per group (B,C) or 10 mice per group (D,E)

obtained over two or three independent experiment, respectively; *p < 0.05, ****p < 0.0001, ns, not significant by unpaired t-test.

severity of skin lesions were significantly reduced in Prevnar-

13 vaccinated mice compared with the control (Figures 2A,B).

MRL-lpr mice also develop kidney disease characterized by

marked glomerular and interstitial inflammation. To evaluate

the effect of Prevnar-13 vaccination on kidney disease, we
quantified albuminuria and kidney pathology. Similar to its

ameliorative effect on skin disease, Prevnar-13 vaccination

decreased severity of kidney disease. Vaccinated mice had
significantly less inflammatory infiltrates and proliferative
glomerular lesions compared to controls (Figures 2C,D and

Table 1). Consistently, Prevnar treatment was associated with
significantly lower IgG (Figures 2E,F) and C3b (Figures 2G,H)
deposition in the glomeruli and reduced albuminuria than in
control mice (Figure 2I).

Prevnar-13 Vaccination Differentially
Regulates T and B Lymphocyte Cytokine
Production in MRL-lpr Mice
Adaptive immune responses coordinated between T and B
cells are essential to SLE pathology. We isolated CD3+ T cells
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FIGURE 2 | Prevnar-13 vaccination ameliorates lupus dermatitis and nephritis. Representative pictures (A) and score (B) of skin lesions in Prevnar-13 or vehicle treated

MRL-lpr mice depicted in Figures 1D,E. Representative glomerular lesions (C) and histology severity score (D) of nephritis. Representative immunofluorescence

(Continued)
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FIGURE 2 | staining for IgG (E) and C3b (G) and data quantification (F and H, respectively) in the glomeruli of 3 control and 3 Prevnar-13 vaccinated MRL-lpr mice

(each dot represents the average of glomerular MFI for each mouse). Weekly changes in urinary albumin/creatinine ratio (A/C) (I). Data are presented as mean ± SEM

and they are the total of three independent experiments including 3–4 mice per group each. Two mice per group died before 6 months of age; *p < 0.05, **p < 0.001,

****p < 0.0001 by Wilcoxon test (B,D), unpaired t-test (F,H), or two-way repeated measures ANOVA test (I; comparisons between the two groups at the same

time-points).

TABLE 1 | Single renal histological scores of MRL-lpr mice treated with vehicle or

Prevnar-13.

Vehicle Prevnar-13

Endocapillary hypercellularity 3 (2.5–3) 1 (1, 2)*

Neutrophil infiltration/karyorrhexis 3 (1.5–3) 1 (0.5–1.5)

Fibrinoid necrosis 3 (1–3) 0 (0–1)*

Wire loops/hyaline thrombi 1 (0–2) 0 (0–0)

Crescents 2 (1–2.5) 1 (0–1)

Interstitial inflammation 2 (1.5–2) 1 (1–1.5)

Total score 14 (7.5–15.5) 5 (3–6.5)*

MRL-lpr mice were treated with vehicle (n = 7) or Prevnar-13 (n = 7) starting at 3 months

of age and sacrificed at 6 months of age. A scale from 0 to 3 was used for each lesion,

corresponding to the percentage of affected glomeruli (0= no lesion, 1=< 25%, 2= 25%

– 50%, 3 = > 50% of glomeruli), based on the International Society of Nephrology/Renal

Pathology Society classification for lupus nephritis (30). Values are expressed as median

(IQR). *p < 0.05 vs. vehicle by Wilcoxon test.

and CD19+ B cells from spleens of control and Prevnar-13
vaccinated MRL-lpr mice to compare their function. Production
of IL-17 and IL-4 by anti-CD3/anti-CD28 antibody-stimulated
T cell was completely blocked in Prevnar-13 vaccinated
mice (Figures 3A,B), while IL-10 production was significantly
increased (Figure 3C). IFN-γ and TNF-α production was not
affected (Figures 3D,E). We stimulated B cells with two toll like
receptor ligands, namely R848 and LPS, that activate TLR7/8 and
TLR4, respectively. Similar to T cells, stimulated B cells produced
less cytokines (IL-6 and TNF-α) in Prevnar-13 vaccinated mice
(Figures 3F–H).

Prevnar-13 Vaccination Reduces TFH and
Increases TFR Cells in MRL-lpr Mice
To understand the mechanisms responsible for amelioration of
disease severity associated with Prevnar-13 administration,
we measured percentages of total CD4+ and CD8+ T
cells, CD4+CD25+FOXP3+ regulatory T cells (TREG), TFH,
TFR, and germinal center B cells (GC B). We found that
TFH were significantly lower, while TFR were significantly
higher in Prevnar-13 treated mice compared to controls
(Figures 4A–C), as was TFR/TFH (Figure 4D). No other
T cell subsets were significantly different between groups
(Supplementary Figure 1), suggesting that the dominant T cell
effect responsible for the amelioration of disease severity in
Prevnar-13 treated MRL-lpr mice is related to changes in TFH

and TFR cells.

DISCUSSION

Our data indicate that anti-pneumococcal vaccine Prevnar-
13, effectively produces humoral PPS-specific immunity in
lupus-prone MRL-lpr mice, while also ameliorating disease

severity, a phenomenon associated with reduced TFH cells.
Although SLE patients are at increased risk for Streptococcus
pneumoniae infection (9, 11), vaccination coverage remains
dramatically low (32). Limited data are available regarding
efficacy of recommended prime-and-boost strategy using
Prevnar-13 in SLE patients, but available evidence indicates
that they can generate an effective response, albeit inferior
compared to healthy controls (11, 33). Our data in MRL-lpr
mice confirm that Prevnar-13 effectively promotes anti-
pneumococcal response, even under MMF immunosuppression,
supporting feasibility for vaccination use even in patients
receiving immunosuppression.

The effect of Prevnar-13 vaccination on disease severity is
poorly defined. Although overall data support its safety, cases
of increased disease severity post-vaccination were reported
(17, 18, 34). Our data in mice surprisingly showed significant
amelioration of both renal and skin lesions in vaccinated
mice. Our data were generated in 3-month-old mice, a
phase when disease is only at its onset (35). This is rarely
the case in humans with SLE whose vaccine indication is
related to more advanced disease. It is possible that effects
of Prevnar-13 would be diminished or absent in more
established/ongoing disease. Another difference between our
experiments in mice and human studies is that mice were
not receiving immunosuppression, which is rarely the case
for SLE patients. However, our data largely support safety
of vaccination with Prevnar and support the concept that, if
performed early during disease progression, it may be beneficial
for disease management.

Generally, polysaccharides are considered to be classic T-cell-
independent antigens that do not elicit cell-mediated immune
responses. Most bacterial polysaccharides elicit humoral immune
responses that result in the induction of low-affinity IgM and
some IgG antibodies. Certain polysaccharides of microbial origin
have been described to act as potent immunomodulators with
specific activity for both T cells and antigen-presenting cells
(36). These polysaccharides termed zwitterionic polysaccharides
(ZPSs), have both positively and negatively charged moieties
and share the same biologic function. These ZPSs include
S. pneumoniae type 1 polysaccharide (Sp1), Staphylococcus
aureus type 5 and 8 polysaccharides (CP5 and CP8), and PSA
from B. fragilis. ZPSs are handled by the MHCII pathway
in a manner similar to that documented for traditional
protein antigens (8). The first step is uptake of antigen
by antigen presenting cells (APCs). Sp1 is endocytosed by
professional APCs such as dendritic cells (DCs), B cells,
and macrophages.

In an animal model of intra-abdominal surgical adhesion
formation, ZPSs (PSA and Sp1) induced formation of a
distinct subpopulation of CD4+CD45RBlo T cells that
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FIGURE 3 | Prevnar-13 vaccination differentially regulates T and B lymphocyte cytokine production in MRL-lpr mice. Enriched CD3+CD4+ T cells isolated from the

spleens of control or Prevnar-13 vaccinated MRL-lpr mice were stimulated with anti-CD3 and anti-CD28 antibodies for 4 h. Supernatants were harvested to measure

cytokine production: IL-17 (A), IL-4 (B), IL-10 (C), and IFN-γ (D), TNF-α (E) (ELISA). Splenic B220+ B cells were enriched from the same mice and stimulated with the

TLR7/8 ligand R848 (F,G) or TLR4 ligand LPS (H). At 1 day after T cell stimulation and 5 days after B cell stimulation, we measured IL-6 (F) and TNF-α (G,H)

production in the supernatants (ELISA). Data are presented as mean ± SD and each dot represents the technical replicate of T or B cell responses from 6 mice per

group pooled together, ***p < 0.001, ****p < 0.0001, ns, not significant by unpaired t-test.

produced IL-10 and have anti-inflammatory properties
(37). Consistently, we found that Prevnar-13 was associated
with increased IL-10 production by T cells which suppresses
the IL-2 production required for T-cell clonal expansion
(38, 39). Conversely, production of IL-4 and IL-17, two
cytokines associated with active disease (40), were inhibited
by Prevnar-13.

Polysaccharide-protein conjugates bind to the B cell receptor
(BCR) of polysaccharide-specific pre-B cells and are taken into
the endosome (41, 42). The protein portion is digested by

proteases to release peptide epitopes, which bind to MHCII by
replacing self-peptide. Our data show that B cells from Prevnar-
13 treated mice display reduced production of TNF-α and IL-6,
cytokines that are important for B cell maturation and have been
shown to correlate with disease activity (43–45). Whether such
effects are due to a direct effect of ZPSs on B cell or through
affected T cells modifying B cell activity was not addressed by
our studies.

Autoimmune disease in MRL-lpr mice is dependent on
TLR7, TLR9, and toll-like receptor (TLR) signal transduction

Frontiers in Immunology | www.frontiersin.org 7 November 2019 | Volume 10 | Article 2695

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cantarelli et al. Pneumococcal Vaccine and Murine Lupus

FIGURE 4 | Prevnar-13 vaccination reduces TFH and increases TFR cells in

MRL-lpr mice. Percentages of CD4+CXCR5+PD1+FOXP3+ TFH (A,B) and

CD4+CXCR5+PD1+FOXP3− TFR (A,C) cells, and TFR/TFH ratio (D) in 6-month

old MRL-lpr treated with Prevnar-13 or vehicle at 3 months of age. Data are

presented as mean ± SD and they are the total of three independent

experiments including each 3–4 mice per group, *p < 0.05, **p < 0.001 by

unpaired t-test.

molecule Myeloid differentiation primary response 88 (MYD88).
Mice lacking either the combined TLR7/9 or MYD88 do
not develop autoimmune disease (46). Our ex vivo studies
demonstrated that B cell from Prevnar-treated mice are
hyporesponsive to stimulation with ligands for TLR 7/8 and
TLR4, both of which utilize MYD88 for signal transduction.
Although pneumococcal polysaccharides alone do not ligate
TLRs, the formulation in Prevnar contains TLR2 agonists
(47) dependent on MYD88 for signaling (48). While usually

viewed in the context of macrophages, endotoxin tolerance
causes immune cell changes, including increased regulatory T
cells (49). We speculate that Prevnar antigens and duration of
their signaling could be producing a relative “tolerant” state
compared to untreated mouse, which would be consistent with
observed impairments of cytokine production and increased
TFR frequencies.

Previous studies indicate that polysaccharide vaccines may
generate TFH cell responses in mice and humans, with a link
to a functional association with the immunogenicity of the
vaccine (50, 51). However, data on the effect of Prevnar-13
on TFH and TFR (a subset of regulatory T cells that controls
TFH activation) are missing. Our data show that, in Prevnar-
13 treated mice, the TFR/TFH ratio significantly increased. How
Prevnar promoted these subpopulation changes and their role in
modulating disease severity go beyond the scope of the present
paper; it is possible to speculate that reduction of peripheral
TFH cells is, at least in part, involved in the beneficial effect of
Prevnar-13 on disease activity.

In conclusion, our studies showed that anti-pneumococcal
vaccination with Prevnar-13 associates with amelioration of
disease severity in murine lupus, a phenomenon associated with
reduced TNF-α and IL-6 production by B cells and increased
TFR/TFH ratio. These data provide further rationale and support
to current guidelines recommending Prevnar-13 vaccination
in SLE patients. Whether these mechanisms extend to other
vaccines remains unknown.
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