9,790 research outputs found

    Climbing the cosmic ladder with stellar twins

    Full text link
    Distances to stars are key to revealing a three-dimensional view of the Milky Way, yet their determination is a major challenge in astronomy. Whilst the brightest nearby stars benefit from direct parallax measurements, fainter stars are subject of indirect determinations with uncertainties exceeding 30%. We present an alternative approach to measuring distances using spectroscopically-identified twin stars. Given a star with known parallax, the distance to its twin is assumed to be directly related to the difference in their apparent magnitudes. We found 175 twin pairs from the ESO public HARPS archives and report excellent agreement with Hipparcos parallaxes within 7.5%. Most importantly, the accuracy of our results does not degrade with increasing stellar distance. With the ongoing collection of high-resolution stellar spectra, our method is well-suited to complement Gaia.Comment: published online on MNRA

    The Assembly of Diversity in the Morphologies and Stellar Populations of High-Redshift Galaxies

    Full text link
    We have studied the evolution in the morphologies, sizes, stellar-masses, colors, and internal color dispersion (ICD) of galaxies at z=1 and 2.3, using a near-IR, flux-limited catalog for the HDF-N. At z=1 most luminous galaxies have morphologies of early-to-mid Hubble-types, and many show transformations between their rest-frame UV-optical morphologies. Galaxies at z=2.3 have compact and irregular morphologies with no clearly evident Hubble-sequence candidates. The mean galaxy size grows from z=2.3 to 1 by 40%, and the density of galaxies larger than 3 kpc increases by 7 times. At z=1, the size-luminosity distribution is broadly consistent with that of local galaxies, with passive evolution. However, galaxies at z=2.3 are smaller than the large present-day galaxies, and must continue to grow in size and stellar mass. We have measured the galaxies' UV-optical ICD, which quantifies differences in morphology and the relative amount of on-going star-formation. The mean and scatter in galaxies' total colors and ICD increase from z=2.3 to 1. At z=1 many galaxies with large ICD are spirals, with a few irregular systems. Few z=2.3 galaxies have high ICD, and those that do are actively merging. We interpret this as evidence for the presence of older and more diverse stellar populations at z=1 that are not generally present at z>2. We conclude that the star-formation histories of galaxies at z>2 are dominated by discrete, recurrent bursts, which quickly homogenize the galaxies' stellar content, and are possibly associated with mergers. The increase in the stellar-population diversification by z<1.4 implies that merger-induced starbursts occur less frequently than at higher redshifts, and more quiescent star-forming modes dominate. This transition coincides with the emergence of Hubble-sequence galaxies. [Abridged]Comment: Accepted for publication in the Astrophysical Journal. 20 pages, in emulateapj forma

    Performance of anti-Salmonella lactic acid bacteria in the porcine intestine

    Get PDF
    Of five anti-Salmonella porcine cultures administered to pigs at 1010 cfu/day, two Lactobacillus murinus strains demonstrated superior survival during gastrointestinal transit. Both were detected at ~107 -108 cfu/g faeces which was higher (P\u3c0.05) than Pediococcus pentosaceus DPC6006 (~105 cfu/g). One Lb. murinus strain was also excreted at higher numbers (P\u3c0.05) than either Lb. salivarius DPC6005 or Lb. pentosus DPC6004 (both ~106 cfu/g). The Lb. murinus strains persisted in both the faeces and the caecum for at least 9 days post-administration. Animals fed a combination of all five strains at 1010 cfu/day excreted ~107 cfu/g of the administered strains, which was higher (P\u3c0.05) than only P. pentosaceus DPC6006. Randomly amplified polymorphic DNA (RAPD) PCR analysis revealed that both Lb. murinus strains predominated in the faeces of these animals during administration, while post-administration, both Lb. murinus strains and Lb. pentosus DPC6004 were recovered from the faeces and the caecum while P. pentosaceus DPC6006 was only detected in the caecum. After 21 days of culture administration, faecal Enterobacteriaceae counts were reduced in pigs fed Lb. salivarius DPC6005, P. pentosaceus DPC6006, Lb. pentosus DPC6004 and the culture mix, though not significantly. Overall, the porcine intestinal isolates offer potential as probiotics for enteropathogen reduction in pigs; possibly as a combination due to strain variation

    On Measuring the Infrared Luminosity of Distant Galaxies with the Space Infrared Telescope Facility

    Full text link
    The Space Infrared Telescope Facility (SIRTF) will revolutionize the study of dust-obscured star formation in distant galaxies. Although deep images from the Multiband Imaging Photometer for SIRTF (MIPS) will provide coverage at 24, 70, and 160 micron, the bulk of MIPS-detected objects may only have accurate photometry in the shorter wavelength bands due to the confusion noise. Therefore, we have explored the potential for constraining the total infrared (IR) fluxes of distant galaxies with solely the 24 micron flux density, and for the combination of 24 micron and 70 micron data. We also discuss the inherent systematic uncertainties in making these transitions. Under the assumption that distant star-forming galaxies have IR spectral energy distributions (SEDs) that are represented somewhere in the local Universe, the 24 micron data (plus optical and X-ray data to allow redshift estimation and AGN rejection) constrains the total IR luminosity to within a factor of 2.5 for galaxies with 0.4 < z < 1.6. Incorporating the 70 micron data substantially improves this constraint by a factor < 6. Lastly, we argue that if the shape of the IR SED is known (or well constrained; e.g., because of high IR luminosity, or low ultraviolet/IR flux ratio), then the IR luminosity can be estimated with more certainty.Comment: 4 pages, 3 figures (2 in color). Accepted for Publication in the Astrophysical Journal Letters, 2002 Nov

    Primary Beam Shape Calibration from Mosaicked, Interferometric Observations

    Full text link
    Image quality in mosaicked observations from interferometric radio telescopes is strongly dependent on the accuracy with which the antenna primary beam is calibrated. The next generation of radio telescope arrays such as the Allen Telescope Array (ATA) and the Square Kilometer Array (SKA) have key science goals that involve making large mosaicked observations filled with bright point sources. We present a new method for calibrating the shape of the telescope's mean primary beam that uses the multiple redundant observations of these bright sources in the mosaic. The method has an analytical solution for simple Gaussian beam shapes but can also be applied to more complex beam shapes through χ2\chi^2 minimization. One major benefit of this simple, conceptually clean method is that it makes use of the science data for calibration purposes, thus saving telescope time and improving accuracy through simultaneous calibration and observation. We apply the method both to 1.43 GHz data taken during the ATA Twenty Centimeter Survey (ATATS) and to 3.14 GHz data taken during the ATA's Pi Gigahertz Sky Survey (PiGSS). We find that the beam's calculated full width at half maximum (FWHM) values are consistent with the theoretical values, the values measured by several independent methods, and the values from the simulation we use to demonstrate the effectiveness of our method on data from future telescopes such as the expanded ATA and the SKA. These results are preliminary, and can be expanded upon by fitting more complex beam shapes. We also investigate, by way of a simulation, the dependence of the accuracy of the telescope's FWHM on antenna number. We find that the uncertainty returned by our fitting method is inversely proportional to the number of antennas in the array.Comment: Accepted by PASP. 8 pages, 8 figure

    Shock tunnel studies of scramjet phenomena, supplement 6

    Get PDF
    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation

    The Internal Ultraviolet-to-Optical Color Dispersion: Quantifying the Morphological K-Correction

    Full text link
    We present a quantitative measure of the internal color dispersion within galaxies, which quantifies differences in morphology as a function of wavelength. We apply this statistic to a local galaxy sample with archival images at 1500 and 2500 Angstroms from the Ultraviolet Imaging Telescope, and ground-based B-band observations to investigate how the color dispersion relates to global galaxy properties. The intenal color dispersion generally correlates with transformations in galaxy morphology as a function of wavelength, i.e., it quantifies the morphological K-correction. Mid-type spiral galaxies exhibit the highest dispersion in their internal colors, which stems from differences in the bulge, disk, and spiral-arm components. Irregulars and late-type spirals show moderate internal color dispersion, which implies that young stars generally dominate the colors. Ellipticals, lenticulars, and early-type spirals generally have low or negligible internal color dispersion, which indicates that the stars contributing to the UV-to-optical emission have a very homogeneous distribution. We discuss the application of the internal color dispersion to high-redshift galaxies in deep, Hubble Space Telescope images. By simulating local galaxies at cosmological distances, many of the galaxies have luminosities that are sufficiently bright at rest--frame optical wavelengths to be detected within the limits of the currently deepest near-infrared surveys even with no evolution. Under assumptions that the luminosity and color evolution of the local galaxies conform with the measured values of high-redshift objects, we show that galaxies' intrinsic internal color dispersion remains measurable out to z ~ 3.Comment: Accepted for publication in the Astrophysical Journal. 41 pages, 13 figures (3 color). Full resolution version (~8 Mb) available at http://mips.as.arizona.edu/~papovich/papovich_astroph.p

    AEGIS: Extinction and Star Formation Tracers from Line Emission

    Get PDF
    Strong nebular emission lines are a sensitive probe of star formation and extinction in galaxies, and the [O II] line detects star forming populations out to z>1. However, star formation rates from emission lines depend on calibration of extinction and the [O II]/H-alpha line ratio, and separating star formation from AGN emission. We use calibrated line luminosities from the DEEP2 survey and Palomar K magnitudes to show that the behavior of emission line ratios depends on galaxy magnitude and color. For galaxies on the blue side of the color bimodality, the vast majority show emission signatures of star formation, and there are strong correlations of extinction and [O II]/H-alpha with restframe H magnitude. The conversion of [O II] to extinction-corrected H-alpha and thus to star formation rate has a significant slope with M_H, 0.23 dex/mag. Red galaxies with emission lines have a much higher scatter in their line ratios, and more than half show AGN signatures. We use 24 micron fluxes from Spitzer/MIPS to demonstrate the differing populations probed by nebular emission and by mid-IR luminosity. Although extinction is correlated with luminosity, 98% of IR-luminous galaxies at z~1 are still detected in the [O II] line. Mid-IR detected galaxies are mostly bright and intermediate color, while fainter, bluer galaxies with high [O II] luminosity are rarely detected at 24 microns.Comment: 4 pages, 3 figures. Accepted for publication in ApJ Letters AEGIS special editio
    • …
    corecore