2,351 research outputs found

    General relativistic gravitational field of a rigidly rotating disk of dust: Solution in terms of ultraelliptic functions

    Full text link
    In a recent paper we presented analytic expressions for the axis potential, the disk metric, and the surface mass density of the global solution to Einstein's field equations describing a rigidly rotating disk of dust. Here we add the complete solution in terms of ultraelliptic functions and quadratures.Comment: 5 pages, published in 1995 [Phys. Rev. Lett. 75 (1995) 3046

    Explicit connection between conformal field theory and 2+1 Chern-Simons theory

    Get PDF
    We give explicit field theoretical representations for the observables of 2+1 dimensional Chern-Simons theory in terms of gauge invariant composites of 2D WZW fields. To test our identification we compute some basic Wilson loop correlators reobtaining known results.Comment: 13 pages, Latex file. To appear in Mod.Phys.Lett.

    Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole

    Full text link
    We solve a class of boundary value problems for the stationary axisymmetric Einstein equations corresponding to a disk of dust rotating uniformly around a central black hole. The solutions are given explicitly in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the absence of a black hole, they reduce to the Neugebauer-Meinel disk.Comment: 46 page

    Glueball calculations in large-N_c gauge theory

    Get PDF
    We use the light-front Hamiltonian of transverse lattice gauge theory to compute from first principles the glueball spectrum and light-front wavefunctions in the leading order of the 1/N_c colour expansion. We find 0^{++}, 2^{++}, and 1^{+-} glueballs having masses consistent with N_c=3 data available from Euclidean lattice path integral methods. The wavefunctions exhibit a light-front constituent gluon structure.Comment: 4 pages, 2 figures, uses macro boxedeps.tex, minor corrections in revised versio

    Quenched Chiral Artifacts for Wilson-Dirac Fermions

    Get PDF
    We examine artifacts associated with the chiral symmetry breaking induced through the use of Wilson-Dirac fermions in lattice Monte Carlo computations. For light quark masses, the conventional quenched theory can not be defined using direct Monte Carlo methods due to the existence of nonintegrable poles in physical quantities. These poles are associated with the real eigenvalue spectrum of the Wilson-Dirac operator. We show how this singularity structure can be observed in the analysis of both QED in two dimensions and QCD in four dimensions.Comment: 32 pages (Latex) including 13 figures (EPS

    Anomaly Cancellation in 2+1 dimensions in the presence of a domainwall mass

    Full text link
    A Fermion in 2+1 dimensions, with a mass function which depends on one spatial coordinate and passes through a zero ( a domain wall mass), is considered. In this model, originally proposed by Callan and Harvey, the gauge variation of the effective gauge action mainly consists of two terms. One comes from the induced Chern-Simons term and the other from the chiral fermions, bound to the 1+1 dimensional wall, and they are expected to cancel each other. Though there exist arguments in favour of this, based on the possible forms of the effective action valid far from the wall and some facts about theories of chiral fermions in 1+1 dimensions, a complete calculation is lacking. In this paper we present an explicit calculation of this cancellation at one loop valid even close to the wall. We show that, integrating out the ``massive'' modes of the theory does produce the Chern-Simons term, as appreciated previously. In addition we show that it generates a term that softens the high energy behaviour of the 1+1 dimensional effective chiral theory thereby resolving an ambiguity present in a general 1+1 dimensional theory.Comment: 17 pages, LaTex file, CU-TP-61

    Anomalous Chiral Behavior in Quenched Lattice QCD

    Full text link
    A study of the chiral behavior of pseudoscalar masses and decay constants is carried out in quenched lattice QCD with Wilson fermions. Using the modified quenched approximation (MQA) to cure the exceptional configuration problem, accurate results are obtained for pion masses as low as \approx 200 MeV. The anomalous chiral log effect associated with quenched η\eta' loops is studied in both the relation between mπ2m_{\pi}^2 vs. mqm_q and in the light-mass behavior of the pseudoscalar and axial vector matrix elements. The size of these effects agrees quantitatively with a direct measurement of the η\eta' hairpin graph, as well as with a measurement of the topological susceptibility, thus providing several independent and quantitatively consistent determinations of the quenched chiral log parameter δ\delta. For β=5.7\beta=5.7 with clover-improved fermions (Csw=1.57)(C_{sw} =1.57) all results are consistent with δ=0.065±0.013\delta=0.065\pm 0.013 .Comment: 51 pages, 20 figures, Late

    The Post-Newtonian Approximation of the Rigidly Rotating Disc of Dust to Arbitrary Order

    Full text link
    Using the analytic, global solution for the rigidly rotating disc of dust as a starting point, an iteration scheme is presented for the calculation of an arbitrary coefficient in the post-Newtonian (PN) approximation of this solution. The coefficients were explicitly calculated up to the 12th PN level and are listed in this paper up to the 4th PN level. The convergence of the series is discussed and the approximation is found to be reliable even in highly relativistic cases. Finally, the ergospheres are calculated at increasing orders of the approximation and for increasingly relativistic situations.Comment: 19 pages, 2 tables, 4 figures Accepted for publication in Phys. Rev.

    The Extreme Kerr Throat Geometry: A Vacuum Analog of AdS_2 x S^2

    Full text link
    We study the near horizon limit of a four dimensional extreme rotating black hole. The limiting metric is a completely nonsingular vacuum solution, with an enhanced symmetry group SL(2,R) x U(1). We show that many of the properties of this solution are similar to the AdS_2 x S^2 geometry arising in the near horizon limit of extreme charged black holes. In particular, the boundary at infinity is a timelike surface. This suggests the possibility of a dual quantum mechanical description. A five dimensional generalization is also discussed.Comment: 21 page

    Schwarzschild Tests of the Wahlquist-Estabrook-Buchman-Bardeen Tetrad Formulation for Numerical Relativity

    Full text link
    A first order symmetric hyperbolic tetrad formulation of the Einstein equations developed by Estabrook and Wahlquist and put into a form suitable for numerical relativity by Buchman and Bardeen (the WEBB formulation) is adapted to explicit spherical symmetry and tested for accuracy and stability in the evolution of spherically symmetric black holes (the Schwarzschild geometry). The lapse and shift which specify the evolution of the coordinates relative to the tetrad congruence are reset at frequent time intervals to keep the constant-time hypersurfaces nearly orthogonal to the tetrad congruence and the spatial coordinate satisfying a kind of minimal rate of strain condition. By arranging through initial conditions that the constant-time hypersurfaces are asymptotically hyperbolic, we simplify the boundary value problem and improve stability of the evolution. Results are obtained for both tetrad gauges (``Nester'' and ``Lorentz'') of the WEBB formalism using finite difference numerical methods. We are able to obtain stable unconstrained evolution with the Nester gauge for certain initial conditions, but not with the Lorentz gauge.Comment: (accepted by Phys. Rev. D) minor changes; typos correcte
    corecore