238 research outputs found
Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks
In recent work we presented the first results of global general relativistic
magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion
disks around rotating black holes. The simulated tilted disks showed dramatic
differences from comparable untilted disks, such as asymmetrical accretion onto
the hole through opposing "plunging streams" and global precession of the disk
powered by a torque provided by the black hole. However, those simulations used
a traditional spherical-polar grid that was purposefully underresolved along
the pole, which prevented us from assessing the behavior of any jets that may
have been associated with the tilted disks. To address this shortcoming we have
added a block-structured "cubed-sphere" grid option to the Cosmos++ GRMHD code,
which will allow us to simultaneously resolve the disk and polar regions. Here
we present our implementation of this grid and the results of a small suite of
validation tests intended to demonstrate that the new grid performs as
expected. The most important test in this work is a comparison of identical
tilted disks, one evolved using our spherical-polar grid and the other with the
cubed-sphere grid. We also demonstrate an interesting dependence of the
early-time evolution of our disks on their orientation with respect to the grid
alignment. This dependence arises from the differing treatment of current
sheets within the disks, especially whether they are aligned with symmetry
planes of the grid or not.Comment: 15 pages, 11 figures, submitted to Ap
Oscillation modes of relativistic slender tori
Accretion flows with pressure gradients permit the existence of standing
waves which may be responsible for observed quasi-periodic oscillations (QPO's)
in X-ray binaries. We present a comprehensive treatment of the linear modes of
a hydrodynamic, non-self-gravitating, polytropic slender torus, with arbitrary
specific angular momentum distribution, orbiting in an arbitrary axisymmetric
spacetime with reflection symmetry. We discuss the physical nature of the
modes, present general analytic expressions and illustrations for those which
are low order, and show that they can be excited in numerical simulations of
relativistic tori. The mode oscillation spectrum simplifies dramatically for
near Keplerian angular momentum distributions, which appear to be generic in
global simulations of the magnetorotational instability. We discuss our results
in light of observations of high frequency QPO's, and point out the existence
of a new pair of modes which can be in an approximate 3:2 ratio for arbitrary
black hole spins and angular momentum distributions, provided the torus is
radiation pressure dominated. This mode pair consists of the axisymmetric
vertical epicyclic mode and the lowest order axisymmetric breathing mode.Comment: submitted to MNRA
Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations
Ongoing millimeter VLBI observations with the Event Horizon Telescope allow
unprecedented study of the innermost portion of black hole accretion flows.
Interpreting the observations requires relativistic, time-dependent physical
modeling. We discuss the comparison of radiative transfer calculations from
general relativistic MHD simulations of Sagittarius A* and M87 with current and
future mm-VLBI observations. This comparison allows estimates of the viewing
geometry and physical conditions of the Sgr A* accretion flow. The viewing
geometry for M87 is already constrained from observations of its large-scale
jet, but, unlike Sgr A*, there is no consensus for its millimeter emission
geometry or electron population. Despite this uncertainty, as long as the
emission region is compact, robust predictions for the size of its jet
launching region can be made. For both sources, the black hole shadow may be
detected with future observations including ALMA and/or the LMT, which would
constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The
Central Kiloparse
Observing Lense-Thirring Precession in Tidal Disruption Flares
When a star is tidally disrupted by a supermassive black hole (SMBH), the
streams of liberated gas form an accretion disk after their return to
pericenter. We demonstrate that Lense-Thirring precession in the spacetime
around a rotating SMBH can produce significant time evolution of the disk
angular momentum vector, due to both the periodic precession of the disk and
the nonperiodic, differential precession of the bound debris streams. Jet
precession and periodic modulation of disk luminosity are possible
consequences. The persistence of the jetted X-ray emission in the Swift
J164449.3+573451 flare suggests that the jet axis was aligned with the spin
axis of the SMBH during this event.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letters. Minor changes made to match proof
The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations
Recent high resolution observations of the Galactic center black hole allow
for direct comparison with accretion disk simulations. We compare
two-temperature synchrotron emission models from three dimensional, general
relativistic magnetohydrodynamic simulations to millimeter observations of Sgr
A*. Fits to very long baseline interferometry and spectral index measurements
disfavor the monochromatic face-on black hole shadow models from our previous
work. Inclination angles \le 20 degrees are ruled out to 3 \sigma. We estimate
the inclination and position angles of the black hole, as well as the electron
temperature of the accretion flow and the accretion rate, to be i=50+35-15
degrees, \xi=-23+97-22 degrees, T_e=(5.4 +/- 3.0)x10^10 K and
Mdot=(5+15-2)x10^-9 M_sun / yr respectively, with 90% confidence. The black
hole shadow is unobscured in all best fit models, and may be detected by
observations on baselines between Chile and California, Arizona or Mexico at
1.3mm or .87mm either through direct sampling of the visibility amplitude or
using closure phase information. Millimeter flaring behavior consistent with
the observations is present in all viable models, and is caused by magnetic
turbulence in the inner radii of the accretion flow. The variability at
optically thin frequencies is strongly correlated with that in the accretion
rate. The simulations provide a universal picture of the 1.3mm emission region
as a small region near the midplane in the inner radii of the accretion flow,
which is roughly isothermal and has \nu/\nu_c ~ 1-20, where \nu_c is the
critical frequency for thermal synchrotron emission.Comment: 14 pages, 17 figures, accepted by Ap
Recommended from our members
Numerical Modeling of the Radio Nebula from the 2004 December 27 Giant Flare of SGR 1806-20
We use the relativistic hydrodynamics code Cosmos++ to model the evolution of the radio nebula triggered by the Dec. 27, 2004 giant flare event of soft gamma repeater 1806-20. We primarily focus on the rebrightening and centroid motion occurring subsequent to day 20 following the flare event. We model this period as a mildly relativistic (gamma ~ 1.07 - 1.67) jetted outflow expanding into the interstellar medium (ISM). We demonstrate that a jet with total energy ~ 10^46 ergs confined to a half opening angle ~ 20 degrees fits the key observables of this event, e.g. the flux lightcurve, emission map centroid position, and aspect ratio. In particular, we find excellent agreement with observations if the rebrightening is due to the jet, moving at 0.5c and inclined ~ 0 - 40 degrees toward the observer, colliding with a density discontinuity in the ISM at a radius of several 10^16 cm. We also find that a jet with a higher velocity, >~ 0.7c, and larger inclination, >~ 70 degrees, moving into a uniform ISM can fit the observations in general, but tends to miss the details of rebrightening. The latter, uniform ISM model predicts an ISM density more than 100 times lower than that of the former model, and thus suggests an independent test which might discriminate between the two. One of the strongest constraints of both models is that the data seems to require a non-uniform jet in order to be well fit
- …