6,070 research outputs found

    Two-dimensional structures in the quintic Ginzburg-Landau equation

    Get PDF
    By using ZEUS cluster at Embry-Riddle Aeronautical University we perform extensive numerical simulations based on a two-dimensional Fourier spectral method Fourier spatial discretization and an explicit scheme for time differencing) to find the range of existence of the spatiotemporal solitons of the two-dimensional complex Ginzburg-Landau equation with cubic and quintic nonlinearities. We start from the parameters used by Akhmediev {\it et. al.} and slowly vary them one by one to determine the regimes where solitons exist as stable/unstable structures. We present eight classes of dissipative solitons from which six are known (stationary, pulsating, vortex spinning, filament, exploding, creeping) and two are novel (creeping-vortex propellers and spinning "bean-shaped" solitons). By running lengthy simulations for the different parameters of the equation, we find ranges of existence of stable structures (stationary, pulsating, circular vortex spinning, organized exploding), and unstable structures (elliptic vortex spinning that leads to filament, disorganized exploding, creeping). Moreover, by varying even the two initial conditions together with vorticity, we find a richer behavior in the form of creeping-vortex propellers, and spinning "bean-shaped" solitons. Each class differentiates from the other by distinctive features of their energy evolution, shape of initial conditions, as well as domain of existence of parameters.Comment: 19 pages, 19 figures, 8 tables, updated text and reference

    Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides

    Get PDF
    A range of organosolv pretreatments, using ethanol:water mixtures with dilute sulphuric acid, were applied to Sitka spruce sawdust with the aim of generating useful co-products as well as improving saccharification yield. The most efficient of the pretreatment conditions, resulting in subsequent saccharification yields of up to 86%, converted a large part of the hemicellulose sugars to their ethyl glycosides as identified by GC/MS. These conditions also reduced conversion of pentoses to furfural, the ethyl glycosides being more stable to dehydration than the parent pentoses. Through comparison with the behaviour of model compounds under the same reaction conditions it was shown that the anomeric composition of the products was consistent with a predominant transglycosylation reaction mechanism, rather than hydrolysis followed by glycosylation. The ethyl glycosides have potential as intermediates in the sustainable production of high-value chemicals

    Isolation of high quality lignin as a by-product from ammonia percolation pretreatment of poplar wood

    Get PDF
    A two-step process combining percolation-mode ammonia pretreatment of poplar sawdust with mild organosolv purification of the extracted lignin produced high quality, high purity lignin in up to 31% yield and 50% recovery. The uncondensed fraction of the isolated lignin was up to 34%, close to that the native lignin (40%). Less lignin was recovered after pretreatment in batch mode, apparently due to condensation during the longer residence time of the solubilised lignin at elevated temperature. The lignin recovery was directly correlated with its molecular weight and its nitrogen content. Low nitrogen incorporation, observed at high ammonia concentration, may be explained by limited homolytic cleavage of -O-4 bonds. Ammonia concentrations from 15% to 25% (w/w) gave similar results in terms of lignin structure, yield and recovery

    Meta-analysis to Identify and Evaluate Factors Associated with Regulatory Approval of Orphan Drugs (OD) to Develop an Algorithm for Predicting Regulatory Approval (Success) and to Develop a Standardized Tool to Improve Orphan Drug Portfolio Decision-making

    Get PDF
    Background and Purpose of the Study: Developed an algorithm (AODI) for predicting probability of regulatory success (PRS) for new orphan drugs after phase II testing has been conductedwith the objective of providing a tool to improve drug portfolio decision-making.Methods: Examined 132 studies from recent publications (2005 onwards). Data on safety, efficacy, operational, market, and company characteristics were obtained from public sources. Meta-analysis and meta-regressions were used to provide an unbiased approach to assess overall predictability and to identify the most important individual predictors.Results: Found that a simple three-factor model (disease prevalence, clinical trial duration and clinical trial participation) had high specificity for predicting regulatory approval (success).Conclusion:smaller clinical trial participation, shorter clinical trials duration and lower rare disease prevalence were found to be highly associated with the Probability of Regulatory Success (PRS) of orphan drugs

    Cutwidth: obstructions and algorithmic aspects

    Get PDF
    Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most kk are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most kk. We prove that every minimal immersion obstruction for cutwidth at most kk has size at most 2O(k3logk)2^{O(k^3\log k)}. As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time 2O(k2logk)n2^{O(k^2\log k)}\cdot n, where kk is the optimum width and nn is the number of vertices. While being slower by a logk\log k-factor in the exponent than the fastest known algorithm, given by Thilikos, Bodlaender, and Serna in [Cutwidth I: A linear time fixed parameter algorithm, J. Algorithms, 56(1):1--24, 2005] and [Cutwidth II: Algorithms for partial ww-trees of bounded degree, J. Algorithms, 56(1):25--49, 2005], our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts

    Spatiotemporal Two-Dimensional Solitons in the Complex Ginzburg-Landau Equation

    Get PDF
    We introduce spatiotemporal solitons of the two-dimensional complex Ginzburg-Landau equation (2D CCQGLE) with cubic and quintic nonlinearities in which asymmetry between space-time variables is included. The 2D CCQGLE is solved by a powerful Fourier spectral method, i.e., a Fourier spatial discretization and an explicit scheme for time differencing. Varying the system\u27s parameters, and using different initial conditions, numerical simulations reveal 2D solitons in the form of stationary, pulsating and exploding solitons which possess very distinctive properties. For certain regions of parameters, we have also found stable coherent structures in the form of spinning (vortex) solitons which exist as a result of a competition between focusing nonlinearities and spreading while propagating through medium

    Error correcting code using tree-like multilayer perceptron

    Full text link
    An error correcting code using a tree-like multilayer perceptron is proposed. An original message \mbi{s}^0 is encoded into a codeword \boldmath{y}_0 using a tree-like committee machine (committee tree) or a tree-like parity machine (parity tree). Based on these architectures, several schemes featuring monotonic or non-monotonic units are introduced. The codeword \mbi{y}_0 is then transmitted via a Binary Asymmetric Channel (BAC) where it is corrupted by noise. The analytical performance of these schemes is investigated using the replica method of statistical mechanics. Under some specific conditions, some of the proposed schemes are shown to saturate the Shannon bound at the infinite codeword length limit. The influence of the monotonicity of the units on the performance is also discussed.Comment: 23 pages, 3 figures, Content has been extended and revise

    Statistical mechanics of lossy compression for non-monotonic multilayer perceptrons

    Full text link
    A lossy data compression scheme for uniformly biased Boolean messages is investigated via statistical mechanics techniques. We utilize tree-like committee machine (committee tree) and tree-like parity machine (parity tree) whose transfer functions are non-monotonic. The scheme performance at the infinite code length limit is analyzed using the replica method. Both committee and parity treelike networks are shown to saturate the Shannon bound. The AT stability of the Replica Symmetric solution is analyzed, and the tuning of the non-monotonic transfer function is also discussed.Comment: 29 pages, 7 figure

    A physical model for seismic noise generation by turbulent flow in rivers

    Get PDF
    Previous studies suggest that the seismic noise induced by rivers may be used to infer river transport properties, and previous theoretical work showed that bedload sediment flux can be inverted from seismic data. However, the lack of a theoretical framework relating water flow to seismic noise prevents these studies from providing accurate bedload fluxes and quantitative information on flow processes. Here we propose a forward model of seismic noise caused by turbulent flow. In agreement with previous observations, modeled turbulent flow-induced noise operates at lower frequencies than bedload-induced noise. Moreover, the differences in the spectral signatures of turbulent flow-induced and bedload-induced forces at the riverbed are significant enough that these two processes can be characterized independently using seismic records acquired at various distances from the river. In cases with isolated turbulent flow noise, we suggest that riverbed stress can be inverted. Finally, we validate our model by comparing predictions to previously reported observations. We show that our model captures the spectral peak located around 6–7 Hz and previously attributed to water flow at Hance Rapids in the Colorado River (United States); we also show that turbulent flow causes a significant part of the seismic noise recorded at the Trisuli River in Nepal, which reveals that the hysteresis curve previously reported there does not solely include bedload, but is also largely influenced by turbulent flow-induced noise. We expect the framework presented here to be useful to invert realistic bedload fluxes by enabling the removal of the turbulent flow contribution from seismic data
    corecore