1,122 research outputs found
Correlated exponential functions in high precision calculations for diatomic molecules
Various properties of the general two-center two-electron integral over the
explicitly correlated exponential function are analyzed for the potential use
in high precision calculations for diatomic molecules. A compact one
dimensional integral representation is found, which is suited for the numerical
evaluation. Together with recurrence relations, it makes possible the
calculation of the two-center two-electron integral with arbitrary powers of
electron distances. Alternative approach via the Taylor series in the
internuclear distance is also investigated. Although numerically slower, it can
be used in cases when recurrences lose stability. Separate analysis is devoted
to molecular integrals with integer powers of interelectronic distances
and the vanishing corresponding nonlinear parameter. Several methods
of their evaluation are proposed.Comment: 26 pages, includes two tables with exemplary calculation
Breakup of the aligned H molecule by xuv laser pulses: A time-dependent treatment in prolate spheroidal coordinates
We have carried out calculations of the triple-differential cross section for
one-photon double ionization of molecular hydrogen for a central photon energy
of ~eV, using a fully {\it ab initio}, nonperturbative approach to solve
the time-dependent \Schro equation in prolate spheroidal coordinates. The
spatial coordinates and are discretized in a finite-element
discrete-variable representation. The wave packet of the laser-driven
two-electron system is propagated in time through an effective short iterative
Lanczos method to simulate the double ionization of the hydrogen molecule. For
both symmetric and asymmetric energy sharing, the present results agree to a
satisfactory level with most earlier predictions for the absolute magnitude and
the shape of the angular distributions. A notable exception, however, concerns
the predictions of the recent time-independent calculations based on the
exterior complex scaling method in prolate spheroidal coordinates
[Phys.~Rev.~A~{\bf 82}, 023423 (2010)]. Extensive tests of the numerical
implementation were performed, including the effect of truncating the Neumann
expansion for the dielectronic interaction on the description of the initial
bound state and the predicted cross sections. We observe that the dominant
escape mode of the two photoelectrons dramatically depends upon the energy
sharing. In the parallel geometry, when the ejected electrons are collected
along the direction of the laser polarization axis, back-to-back escape is the
dominant channel for strongly asymmetric energy sharing, while it is completely
forbidden if the two electrons share the excess energy equally.Comment: 17 pages, 9 figure
Microscopic dynamics of thin hard rods
Based on the collision rules for hard needles we derive a hydrodynamic
equation that determines the coupled translational and rotational dynamics of a
tagged thin rod in an ensemble of identical rods. Specifically, based on a
Pseudo-Liouville operator for binary collisions between rods, the Mori-Zwanzig
projection formalism is used to derive a continued fraction representation for
the correlation function of the tagged particle's density, specifying its
position and orientation. Truncation of the continued fraction gives rise to a
generalised Enskog equation, which can be compared to the phenomenological
Perrin equation for anisotropic diffusion. Only for sufficiently large density
do we observe anisotropic diffusion, as indicated by an anisotropic mean square
displacement, growing linearly with time. For lower densities, the Perrin
equation is shown to be an insufficient hydrodynamic description for hard
needles interacting via binary collisions. We compare our results to
simulations and find excellent quantitative agreement for low densities and
qualtitative agreement for higher densities.Comment: 21 pages, 6 figures, v2: clarifications and improved readabilit
Weak Cosmic Censorship: As Strong as Ever
Spacetime singularities that arise in gravitational collapse are always
hidden inside of black holes. This is the essence of the weak cosmic censorship
conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one
of the most important open questions in general relativity. In this Letter, we
reanalyze extreme situations which have been considered as counterexamples to
the weak cosmic censorship conjecture. In particular, we consider the
absorption of scalar particles with large angular momentum by a black hole.
Ignoring back reaction effects may lead one to conclude that the incident wave
may overspin the black hole, thereby exposing its inner singularity to distant
observers. However, we show that when back reaction effects are properly taken
into account, the stability of the black-hole event horizon is irrefutable. We
therefore conclude that cosmic censorship is actually respected in this type of
gedanken experiments.Comment: 4 page
Supervision of the ATLAS High Level Trigger System
Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, PDF (from MS Word). PSN TUGT009; Available at http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUGT009.PDF pers/THJT006.PDFInternational audienceThe ATLAS High Level Trigger (HLT) system provides software-based event selection after the initial LVL1 hardware trigger. It is composed of two stages, the LVL2 trigger and the Event Filter. The HLT is implemented as software tasks running on large processor farms. An essential part of the HLT is the supervision system, which is responsible for configuring, coordinating, controlling and monitoring the many hundreds of processes running in the HLT. A prototype implementation of the supervision system, using tools from the ATLAS Online Software system is presented. Results from scalability tests are also presented where the supervision system was shown to be capable of controlling over 1000 HLT processes running on 230 nodes
Perturbations in the Kerr-Newman Dilatonic Black Hole Background: I. Maxwell waves
In this paper we analyze the perturbations of the Kerr-Newman dilatonic black
hole background. For this purpose we perform a double expansion in both the
background electric charge and the wave parameters of the relevant quantities
in the Newman-Penrose formalism. We then display the gravitational, dilatonic
and electromagnetic equations, which reproduce the static solution (at zero
order in the wave parameter) and the corresponding wave equations in the Kerr
background (at first order in the wave parameter and zero order in the electric
charge). At higher orders in the electric charge one encounters corrections to
the propagations of waves induced by the presence of a non-vanishing dilaton.
An explicit computation is carried out for the electromagnetic waves up to the
asymptotic form of the Maxwell field perturbations produced by the interaction
with dilatonic waves. A simple physical model is proposed which could make
these perturbations relevant to the detection of radiation coming from the
region of space near a black hole.Comment: RevTeX, 36 pages in preprint style, 1 figure posted as a separate PS
file, submitted to Phys. Rev.
Classical and quantum three-dimensional integrable systems with axial symmetry
We study the most general form of a three dimensional classical integrable
system with axial symmetry and invariant under the axis reflection. We assume
that the three constants of motion are the Hamiltonian, , with the standard
form of a kinetic part plus a potential dependent on the position only, the
-component of the angular momentum, , and a Hamiltonian-like constant,
, for which the kinetic part is quadratic in the momenta. We find
the explicit form of these potentials compatible with complete integrability.
The classical equations of motion, written in terms of two arbitrary potential
functions, is separated in oblate spheroidal coordinates. The quantization of
such systems leads to a set of two differential equations that can be presented
in the form of spheroidal wave equations.Comment: 17 pages, 3 figure
Greybody Factors for Brane Scalar Fields in a Rotating Black-Hole Background
We study the evaporation of (4+n)-dimensional rotating black holes into
scalar degrees of freedom on the brane. We calculate the corresponding
absorption probabilities and cross-sections obtaining analytic solutions in the
low-energy regime, and compare the derived analytic expressions to numerical
results, with very good agreement. We then consider the high-energy regime,
construct an analytic high-energy solution to the scalar-field equation by
employing a new method, and calculate the absorption probability and
cross-section for this energy regime, finding again a very good agreement with
the exact numerical results. We also determine the high-energy asymptotic value
of the total cross-section, and compare it to the analytic results derived from
the application of the geometrical optics limit.Comment: Latex file, 30 pages, 5 figures, typos corrected, version published
in Phys. Rev.
Chandra's Close Encounter with the Disintegrating Comets 73P/2006 (Schwassmann--Wachmann--3) Fragment B and C/1999 S4 (LINEAR)
On May 23, 2006 we used the ACIS-S instrument on the Chandra X-ray
Observatory (CXO) to study the X-ray emission from the B fragment of comet
73P/2006 (Schwassmann-Wachmann 3) (73P/B). We obtained a total of 20 ks of CXO
observation time of Fragment B, and also investigated contemporaneous ACE and
SOHO solar wind physical data. The CXO data allow us to spatially resolve the
detailed structure of the interaction zone between the solar wind and the
fragment's coma at a resolution of ~ 1,000 km, and to observe the X-ray
emission due to multiple comet--like bodies. We detect a change in the spectral
signature with the ratio of the CV/OVII line increasing with increasing
collisional opacity as predicted by Bodewits \e (2007). The line fluxes arise
from a combination of solar wind speed, the species that populate the wind and
the gas density of the comet. We are able to understand some of the observed
X-ray morphology in terms of non-gravitational forces that act upon an actively
outgassing comet's debris field. We have used the results of the Chandra
observations on the highly fragmented 73P/B debris field to re-analyze and
interpret the mysterious emission seen from comet C/1999 S4 (LINEAR) on August
1st, 2000, after the comet had completely disrupted. We find the physical
situations to be similar in both cases, with extended X-ray emission due to
multiple, small outgassing bodies in the field of view. Nevertheless, the two
comets interacted with completely different solar winds, resulting in
distinctly different spectra.Comment: accepted by ApJ, 44 Pages, including 4 tables and 14 figure
Solutions to Maxwell's Equations using Spheroidal Coordinates
Analytical solutions to the wave equation in spheroidal coordinates in the
short wavelength limit are considered. The asymptotic solutions for the radial
function are significantly simplified, allowing scalar spheroidal wave
functions to be defined in a form which is directly reminiscent of the
Laguerre-Gaussian solutions to the paraxial wave equation in optics.
Expressions for the Cartesian derivatives of the scalar spheroidal wave
functions are derived, leading to a new set of vector solutions to Maxwell's
equations. The results are an ideal starting point for calculations of
corrections to the paraxial approximation
- …
