617 research outputs found

    Vibron-polaron critical localization in a finite size molecular nanowire

    Full text link
    The small polaron theory is applied to describe the vibron dynamics in an adsorbed nanowire with a special emphasis onto finite size effects. It is shown that the finite size of the nanowire discriminates between side molecules and core molecules which experience a different dressing mechanism. Moreover, the inhomogeneous behavior of the polaron hopping constant is established and it is shown that the core hopping constant depends on the lattice size. However, the property of a lattice with translational invariance is recovered when the size of the nanowire is greater than a critical value. Finally, it is pointed out that these features yield the occurrence of high energy localized states which both the nature and the number are summarized in a phase diagram in terms of the relevant parameters of the problem (small polaron binding energy, temperature, lattice size).Comment: 17 pages, 10 figure

    Mapping the structural diversity of C60 carbon clusters and their infrared spectra

    Full text link
    The current debate about the nature of the carbonaceous material carrying the infrared (IR) emission spectra of planetary and proto-planetary nebulae, including the broad plateaus, calls for further studies on the interplay between structure and spectroscopy of carbon-based compounds of astrophysical interest. The recent observation of C60 buckminsterfullerene in space suggests that carbon clusters of similar size may also be relevant. In the present work, broad statistical samples of C60 isomers were computationally determined without any bias using a reactive force field, their IR spectra being subsequently obtained following local optimization with the density-functional-based tight-binding theory. Structural analysis reveals four main structural families identified as cages, planar polycyclic aromatics, pretzels, and branched. Comparison with available astronomical spectra indicates that only the cage family could contribute to the plateau observed in the 6-9 micron region. The present framework shows great promise to explore and relate structural and spectroscopic features in more diverse and possibly hydrogenated carbonaceous compounds, in relation with astronomical observations

    New dispatching paradigm in power systems including EV charging stations and dispersed generation: A real test case

    Get PDF
    Electric Vehicles (EVs) are becoming one of the main answers to the decarbonization of the transport sector and Renewable Energy Sources (RES) to the decarbonization of the electricity production sector. Nevertheless, their impact on the electric grids cannot be neglected. New paradigms for the management of the grids where they are connected, which are typically distribution grids in Medium Voltage (MV) and Low Voltage (LV), are necessary. A reform of dispatching rules, including the management of distribution grids and the resources there connected, is in progress in Europe. In this paper, a new paradigm linked to the design of reform is proposed and then tested, in reference to a real distribution grid, operated by the main Italian Distribution System Operator (DSO), e-distribuzione. First, in reference to suitable future scenarios of spread of RES-based power plants and EVs charging stations (EVCS), using Power Flow (PF) models, a check of the operation of the distribution grid, in reference to the usual rules of management, is made. Second, a new dispatching model, involving DSO and the resources connected to its grids, is tested, using an Optimal Power Flow (OPF) algorithm. Results show that the new paradigm of dispatching can effectively be useful for preventing some operation problems of the distribution grids

    EV charging stations and RES-based DG: A centralized approach for smart integration in active distribution grids

    Get PDF
    Renewable Energy Sources based (RES-based) Dispersed Generation (DG) and Electrical Vehicles (EVs) charging systems diffusion is in progress in many Countries around the word. They have huge effects on the distribution grids planning and operation, particularly on MV and LV distribution grids. Many studies on their impact on the power systems are ongoing, proposing different approaches of managing. The present work deals with a real application case of integration of EVs charging stations with ES-based DG. The final task of the integration is to be able to assure the maximum utilization of the distribution grid to which both are connected, without any upgrading action, and in accordance with Distribution System Operators (DSOs) needs. The application of the proposed approach is related to an existent distribution system, owned by edistribuzione, the leading DSO in Italy. Diverse types of EVs supplying stations, with diverse diffusion scenarios, have been assumed for the case study; various Optimal Power Flow (OPF) models, based on diverse objective functions, reflecting DSO necessities, have been applied and tried. The obtained results demonstrate that a centralized management approach by the DSO, could assure the respect of operation limits of the system in the actual asset, delaying or avoiding upgrading engagements and charges

    Assessment of the worthwhileness of efficient driving in railway systems with high-receptivity power supplies

    Get PDF
    Eco-driving is one of the most important strategies for significantly reducing the energy consumption of railways with low investments. It consists of designing a way of driving a train to fulfil a target running time, consuming the minimum amount of energy. Most eco-driving energy savings come from the substitution of some braking periods with coasting periods. Nowadays, modern trains can use regenerative braking to recover the kinetic energy during deceleration phases. Therefore, if the receptivity of the railway system to regenerate energy is high, a question arises: is it worth designing eco-driving speed profiles? This paper assesses the energy benefits that eco-driving can provide in different scenarios to answer this question. Eco-driving is obtained by means of a multi-objective particle swarm optimization algorithm, combined with a detailed train simulator, to obtain realistic results. Eco-driving speed profiles are compared with a standard driving that performs the same running time. Real data from Spanish high-speed lines have been used to analyze the results in two case studies. Stretches fed by 1 × 25 kV and 2 × 25 kV AC power supply systems have been considered, as they present high receptivity to regenerate energy. Furthermore, the variations of the two most important factors that affect the regenerative energy usage have been studied: train motors efficiency ratio and catenary resistance. Results indicate that the greater the catenary resistance, the more advantageous eco-driving is. Similarly, the lower the motor efficiency, the greater the energy savings provided by efficient driving. Despite the differences observed in energy savings, the main conclusion is that eco-driving always provides significant energy savings, even in the case of the most receptive power supply network. Therefore, this paper has demonstrated that efforts in improving regenerated energy usage must not neglect the role of eco-driving in railway efficiency

    Fast energy transfer mediated by multi-quanta bound states in a nonlinear quantum lattice

    Full text link
    By using a Generalized Hubbard model for bosons, the energy transfer in a nonlinear quantum lattice is studied, with special emphasis on the interplay between local and nonlocal nonlinearity. For a strong local nonlinearity, it is shown that the creation of v quanta on one site excites a soliton band formed by bound states involving v quanta trapped on the same site. The energy is first localized on the excited site over a significant timescale and then slowly delocalizes along the lattice. As when increasing the nonlocal nonlinearity, a faster dynamics occurs and the energy propagates more rapidly along the lattice. Nevertheless, the larger is the number of quanta, the slower is the dynamics. However, it is shown that when the nonlocal nonlinearity reaches a critical value, the lattice suddenly supports a very fast energy propagation whose dynamics is almost independent on the number of quanta. The energy is transfered by specific bound states formed by the superimposition of states involving v-p quanta trapped on one site and p quanta trapped on the nearest neighbour sites, with p=0,..,v-1. These bound states behave as independent quanta and they exhibit a dynamics which is insensitive to the nonlinearity and controlled by the single quantum hopping constant.Comment: 28 pages, 8 figure

    Torsional response and stiffening of individual multi-walled carbon nanotubes

    Get PDF
    We report on the characterization of torsional oscillators which use multi-walled carbon nanotubes as the spring elements. Through atomic-force-microscope force-distance measurements we are able to apply torsional strains to the nanotubes and measure their torsional spring constants and effective shear moduli. We find that the effective shear moduli cover a broad range, with the largest values near the theoretically predicted value. The data also suggest that the nanotubes are stiffened by repeated flexing.Comment: 4 page

    Deregulated expression of aurora kinases is not a prognostic biomarker in papillary thyroid cancer patients.

    Get PDF
    Abstract A number of reports indicated that Aurora-A or Aurora-B overexpression represented a negative prognostic factor in several human malignancies. In thyroid cancer tissues a deregulated expression of Aurora kinases has been also demonstrated, butno information regarding its possible prognostic role in differentiated thyroid cancer is available. Here, weevaluated Aurora-A and Aurora-B mRNA expression and its prognostic relevance in a series of 87 papillary thyroid cancers (PTC), with a median follow-up of 63 months. The analysis of Aurora-A and Aurora-B mRNA levels in PTC tissues, compared to normal matched tissues, revealed that their expression was either up-or down-regulatedin the majority of cancer tissues. In particular, Aurora-A and Aurora-B mRNA levels were altered, respectively, in 55 (63.2%) and 79 (90.8%) out of the 87 PTC analyzed. A significant positive correlation between Aurora-A and Aurora-B mRNAswas observed (p=0.001). The expression of both Aurora genes was not affected by the BRAF(V600E) mutation. Univariate, multivariate and Kaplan-Mayer analyses documented the lack of association between Aurora-A or Aurora-B expression and clinicopathological parameterssuch as gender, age, tumor size, histology, TNM stage, lymph node metastasis and BRAF status as well asdisease recurrences or disease-free interval. Only Aurora-B mRNA was significantly higher in T(3-4) tissues, with respect to T(1-2) PTC tissues. The data reported here demonstrate that the expression of Aurora kinases is deregulated in the majority of PTC tissues, likely contributing to PTC progression. However, differently from other human solid cancers, detection of Aurora-A or Aurora-B mRNAs is not a prognostic biomarker inPTC patients

    Blister resistant targets for nuclear reaction experiments with α-particle beams

    Get PDF
    Solid targets for nuclear measurements that use α-particle beams commonly experience a form of degradation known as blistering. The effect can prevent the use of solid targets for high intensity α-particle experiments, often necessitating complex gas target systems. To combat this problem, three different blister resistant target backings were designed for use in direct reaction measurements with high intensity α-particle beams. The blister resistant target designs utilize gas diffusive properties of fused silica, sintered metal, and porous evaporated metal. Each target was implanted with 22 Ne ions and bombarded with α-particle beam to test blister resistance. Targets were characterized and monitored using the 22 Ne(p,γ) 23 Na reaction to determine the degradation of implanted material, and compare them to typical implanted noble gas targets. We find that all targets studied exhibit resistance to blistering, with the porous evaporated metal targets displaying the least amount of target material degradation

    Business Transformation: Promising Practices for Social and Affordable Housing in Canada

    Get PDF
    This study involved a literature review on how social housing and other social sector organizations are becoming more entrepreneurial in the face of reduction in public funding. It used a survey of housing organizations across Canada and to identify emerging innovative practice and documented 14 case studies
    • 

    corecore