217,616 research outputs found
Consequences of 't Hooft's Equivalence Class Theory and Symmetry by Large Coarse Graining
According to 't Hooft (Class.Quantum.Grav. 16 (1999), 3263), quantum gravity
can be postulated as a dissipative deterministic system, where quantum states
at the ``atomic scale''can be understood as equivalence classes of primordial
states governed by a dissipative deterministic dynamics law at the ``Planck
scale''. In this paper, it is shown that for a quantum system to have an
underlying deterministic dissipative dynamics, the time variable should be
discrete if the continuity of its temporal evolution is required. Besides, the
underlying deterministic theory also imposes restrictions on the energy
spectrum of the quantum system. It is also found that quantum symmetry at the
``atomic scale'' can be induced from 't Hooft's Coarse Graining classification
of primordial states at the "Planck scale".Comment: 12 papge, Late
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
Case studies on the geological application of LANDSAT imagery in Brazil
The author has identified the following significant results. Sao Domingos Range, Pocos de Caldas, and Araguaia and Tocantins Rivers in Brazil were selected as test sites for LANDSAT imagery. The satellite images were analyzed using conventional photointerpretation techniques, and the results indicate the application of small scale image data in regional structural data analysis, geological mapping, and mineral exploration
A higher-order theory for geometrically nonlinear analysis of composite laminates
A third-order shear deformation theory of laminated composite plates and shells is developed, the Navier solutions are derived, and its finite element models are developed. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for the von Karman nonlinear strains. Closed-form solutions of the theory for rectangular cross-ply and angle-ply plates and cross-ply shells are developed. The finite element model is based on independent approximations of the displacements and bending moments (i.e., mixed finite element model), and therefore, only C sup o -approximation is required. The finite element model is used to analyze cross-ply and angle-ply laminated plates and shells for bending and natural vibration. Many of the numerical results presented here should serve as references for future investigations. Three major conclusions resulted from the research: First, for thick laminates, shear deformation theories predict deflections, stresses and vibration frequencies significantly different from those predicted by classical theories. Second, even for thin laminates, shear deformation effects are significant in dynamic and geometrically nonlinear analyses. Third, the present third-order theory is more accurate compared to the classical and firt-order theories in predicting static and dynamic response of laminated plates and shells made of high-modulus composite materials
- …