20,238 research outputs found

    Ab-initio description of heterostructural alloys: Thermodynamic and structural properties of Mg_x Zn_{1-x} O and Cd_x Zn_{1-x} O

    Full text link
    Pseudobinary heterostructural alloys of ZnO with MgO or CdO are studied by composing the system locally of clusters with varying ratio of cations. We investigate fourfold (wurtzite structure) and sixfold (rocksalt structure) coordination of the atoms. By means of density functional theory we study a total number of 256 16-atom clusters divided into 22 classes for the wurtzite structure and 16 classes for the rocksalt structure for each of the alloy systems. The fraction with which each cluster contributes to the alloy is determined for a given temperature T and composition x within (i) the generalized quasi-chemical approximation, (ii) the model of a strict-regular solution, and (iii) the model of microscopic decomposition. From the cluster fractions we derive conclusions about the miscibility and the critical compositions at which the average crystal structure changes. Thermodynamic properties such as the mixing free energy and the mixing entropy are investigated for the three different statistics. We discuss the consequences of the two different local lattice structures for characteristic atomic distances, cohesive energies, and the alloys' elasticities. The differences in the properties of Mg_x Zn_{1-x} O and Cd_x Zn_{1-x} O are explained and discussed.Comment: 15 pages, 13 figure

    Flow curves of colloidal dispersions close to the glass transition: Asymptotic scaling laws in a schematic model of mode coupling theory

    Full text link
    The flow curves, viz. the curves of stationary stress under steady shearing, are obtained close to the glass transition in dense colloidal dispersions using asymptotic expansions in a schematic model of mode coupling theory. The shear thinning of the viscosity in fluid states and the yielding of glassy states is discussed. At the transition between fluid and shear-molten glass, simple and generalized Herschel-Bulkley laws are derived with power law exponents that can be computed for different particle interactions from the equilibrium structure factor.Comment: 14 pages, 14 figures, 4 tables, Eur. Phys. J. E (submitted

    Interactions and magnetic moments near vacancies and resonant impurities in graphene

    Full text link
    The effect of electronic interactions in graphene with vacancies or resonant scatterers is investigated. We apply dynamical mean-field theory in combination with quantum Monte Carlo simulations, which allow us to treat non-perturbatively quantum fluctuations beyond Hartree-Fock approximations. The interactions narrow the width of the resonance and induce a Curie magnetic susceptibility, signaling the formation of local moments. The absence of saturation of the susceptibility at low temperatures suggests that the coupling between the local moment and the conduction electrons is ferromagnetic

    Spin self-rephasing and very long coherence times in a trapped atomic ensemble

    Full text link
    We perform Ramsey spectroscopy on the ground state of ultra-cold 87Rb atoms magnetically trapped on a chip in the Knudsen regime. Field inhomogeneities over the sample should limit the 1/e contrast decay time to about 3 s, while decay times of 58 s are actually observed. We explain this surprising result by a spin self-rephasing mechanism induced by the identical spin rotation effect originating from particle indistinguishability. We propose a theory of this synchronization mechanism and obtain good agreement with the experimental observations. The effect is general and susceptible to appear in other physical systems.Comment: Revised version; improved description of the theoretical treatmen

    Scalar and vector decomposition of the nucleon self-energy in the relativistic Brueckner approach

    Full text link
    We investigate the momentum dependence of the nucleon self-energy in nuclear matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the Bonn A potential. A strong momentum dependence of the scalar and vector self-energy components can be observed when a commonly used pseudo-vector choice for the covariant representation of the T-matrix is applied. This momentum dependence is dominated by the pion exchange. We discuss the problems of this choice and its relations to on-shell ambiguities of the T-matrix representation. Starting from a complete pseudo-vector representation of the T-matrix, which reproduces correctly the pseudo-vector pion-exchange contributions at the Hartree-Fock level, we observe a much weaker momentum dependence of the self-energy. This fixes the range of the inherent uncertainty in the determination of the scalar and vector self-energy components. Comparing to other work, we find that extracting the self-energy components by a fit to the single particle potential leads to even more ambiguous results.Comment: 35 pages RevTex, 7 PS figures, replaced by a revised and extended versio

    Critical exponents for higher-representation sources in 3D SU(3) gauge theory from CFT

    Get PDF
    We establish an exact mapping between the multiplication table of the irreducible representations of SU(3) and the fusion algebra of the two-dimensional conformal field theory in the same universality class of 3D SU(3) gauge theory at the deconfining point. In this way the Svetitsky-Yaffe conjecture on the critical behaviour of Polyakov lines in the fundamental representation naturally extends to whatever representation one considers. As a consequence, the critical exponents of the correlators of these Polyakov lines are determined. Monte Carlo simulations with sources in the symmetric two-index representation, combined with finite-size scaling analysis, compare very favourably with these predictions.Comment: 15 pages, 2 figure

    Optimal signal states for quantum detectors

    Full text link
    Quantum detectors provide information about quantum systems by establishing correlations between certain properties of those systems and a set of macroscopically distinct states of the corresponding measurement devices. A natural question of fundamental significance is how much information a quantum detector can extract from the quantum system it is applied to. In the present paper we address this question within a precise framework: given a quantum detector implementing a specific generalized quantum measurement, what is the optimal performance achievable with it for a concrete information readout task, and what is the optimal way to encode information in the quantum system in order to achieve this performance? We consider some of the most common information transmission tasks - the Bayes cost problem (of which minimal error discrimination is a special case), unambiguous message discrimination, and the maximal mutual information. We provide general solutions to the Bayesian and unambiguous discrimination problems. We also show that the maximal mutual information has an interpretation of a capacity of the measurement, and derive various properties that it satisfies, including its relation to the accessible information of an ensemble of states, and its form in the case of a group-covariant measurement. We illustrate our results with the example of a noisy two-level symmetric informationally complete measurement, for whose capacity we give analytical proofs of optimality. The framework presented here provides a natural way to characterize generalized quantum measurements in terms of their information readout capabilities.Comment: 13 pages, 1 figure, example section extende

    Jamming transitions in a schematic model of suspension rheology

    Full text link
    We study the steady-state response to applied stress in a simple scalar model of sheared colloids. Our model is based on a schematic (F2) model of the glass transition, with a memory term that depends on both stress and shear rate. For suitable parameters, we find transitions from a fluid to a nonergodic, jammed state, showing zero flow rate in an interval of applied stress. Although the jammed state is a glass, we predict that jamming transitions have an analytical structure distinct from that of the conventional mode coupling glass transition. The static jamming transition we discuss is also distinct from hydrodynamic shear thickening.Comment: 7 pages; 3 figures; improved version with added references. Accepted for publication in Europhysics Letter

    On Approximately Symmetric Informationally Complete Positive Operator-Valued Measures and Related Systems of Quantum States

    Full text link
    We address the problem of constructing positive operator-valued measures (POVMs) in finite dimension nn consisting of n2n^2 operators of rank one which have an inner product close to uniform. This is motivated by the related question of constructing symmetric informationally complete POVMs (SIC-POVMs) for which the inner products are perfectly uniform. However, SIC-POVMs are notoriously hard to construct and despite some success of constructing them numerically, there is no analytic construction known. We present two constructions of approximate versions of SIC-POVMs, where a small deviation from uniformity of the inner products is allowed. The first construction is based on selecting vectors from a maximal collection of mutually unbiased bases and works whenever the dimension of the system is a prime power. The second construction is based on perturbing the matrix elements of a subset of mutually unbiased bases. Moreover, we construct vector systems in \C^n which are almost orthogonal and which might turn out to be useful for quantum computation. Our constructions are based on results of analytic number theory.Comment: 29 pages, LaTe

    Adjustable spin torque in magnetic tunnel junctions with two fixed layers

    Full text link
    We have fabricated nanoscale magnetic tunnel junctions (MTJs) with an additional fixed magnetic layer added above the magnetic free layer of a standard MTJ structure. This acts as a second source of spin-polarized electrons that, depending on the relative alignment of the two fixed layers, either augments or diminishes the net spin-torque exerted on the free layer. The compound structure allows a quantitative comparison of spin-torque from tunneling electrons and from electrons passing through metallic spacer layers, as well as analysis of Joule selfheating effects. This has significance for current-switched magnetic random access memory (MRAM), where spin torque is exploited, and for magnetic sensing, where spin torque is detrimental.Comment: 3 pages, 2 figures, to appear in Appl. Phys. Let
    corecore