4,596 research outputs found

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    Structural and Stratigraphic Control on the Migration of a Contaminant Plume at the P Reactor Area, Savannah River Site, South Carolina

    Get PDF
    Geophysical methods, including a shallow seismic reflection (SSR) survey, surface and borehole ground-penetrating radar (GPR) data, and electrical resistivity imaging (ERI), were conducted at the Savannah River site (SRS), South Carolina, to investigate the shallow stratigraphy, hydrogeophysical zonation, and the applicability and performance of these geophysical techniques for hydrogeological characterization in contaminant areas. The study site is the P Reactor area located within the upper Atlantic coastal plain, with clastic sediments ranging from Late Cretaceous to Miocene in age. The target of this research was the delineation and prediction of migration pathways of a trichloroethylene (TCE) contaminant plume that originates from the northwest section of the reactor facility and discharges into the nearby Steel Creek. This contaminant plume has been migrating in an east-to-west direction and narrowing away from the source in an area where the general stratigraphy along with the groundwater flow dips to the southeast. Here, we present the results from a stratigraphic and hydrogeophysical characterization of the site using the SSR, GPR, and ERI methods. Although detailed stratigraphic layers were identified in the upper approximately 50 m (164 ft), other major findings include (1) the discovery of a shallow (∼23 m [75 ft] from the ground surface) inverse fault, (2) the detection of a paleochannel system that was previously reported but that seems to be controlled by the reactivation of the interpreted fault, and (3) the finding that the hydraulic gradient seems to have a convergence of groundwater flow near the area. The interpreted fault at the study site appears to be of upper Eocene age and may be associated with other known reactivated faults within the Dunbarton Triassic Basin. The coincident use of the SSR and ERI methods in conjunction with the complementary 50-, 100-, and 200-MHz GPR antennas allowed us to generate a detailed geologic model of the shallow subsurface, suggesting that the migration of the TCE plume is constrained by (1) the paleochannel system with respect to its migration direction, (2) the presence of an inverse fault that may also contribute to the paleochannel growth and structural evolution, and (3) the local groundwater flow volume with respect to its longer and narrower shape away from the source updip stratigraphic bedding

    Nurses\u27 Alumnae Association Bulletin - Volume 7 Number 11

    Get PDF
    Anna M. Shafer Barton Memorial Division Births Changes in the Ophthalmology Division Change of Address Clara Melville Fund Continental Tour Deceased Digest of Meetings Inter-County Hospitalization Plan Katherine Childs\u27 Letter Lost Members Marriages Miscellaneous Nursing Home Committee\u27s Report Physical Advantages President James L. Kauffman\u27s Letter President\u27s Greeting Private Duty Section Prizes Relief Fund School Nursing Silhouette of a Public Health Nurse Rooming-in of Infant with Mother Staff Activities The Student White Haven Divisio

    Plausibility functions and exact frequentist inference

    Full text link
    In the frequentist program, inferential methods with exact control on error rates are a primary focus. The standard approach, however, is to rely on asymptotic approximations, which may not be suitable. This paper presents a general framework for the construction of exact frequentist procedures based on plausibility functions. It is shown that the plausibility function-based tests and confidence regions have the desired frequentist properties in finite samples---no large-sample justification needed. An extension of the proposed method is also given for problems involving nuisance parameters. Examples demonstrate that the plausibility function-based method is both exact and efficient in a wide variety of problems.Comment: 21 pages, 5 figures, 3 table

    First Astronomical Use of Multiplexed Transition Edge Bolometers

    Get PDF
    We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE'S detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Δλ/λ= 1/7 at a resolution of δλ/λ ≈ 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 µm and 450 µm bands. These bands cover line emission from the important star formation tracers neutral carbon [Cl] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry

    Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression

    Get PDF
    Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466, No. DE-FG02-04ER54761, No. DE-AC05-06OR23100, No. DE-SC0001961, and No. DE-AC05-00OR22725. S. R. H. was supported by AINSE and ANSTO

    The Continuing Search to Find a More Effective and Less Intimidating Way to Teach Research Methods in Higher Education

    Get PDF
    Existing literature examining the teaching of research methods highlights difficulties students face when developing research competencies. Studies of student-centered teaching approaches have found increased student performance and improved confidence in undertaking research projects. To develop a student-centered approach, it could be beneficial to teach students through active participation, with the development of their research agendas as the basis for progression. To develop this goal, the research methods module for graduate students at a UK business school was restructured into a two-week block utilizing a student-centered approach. The performance of the students was then compared to the performance of students who undertook the same course material presented in a traditional semester-long module and the results were then statistically analyzed. The results of this study provide new and interesting evidence of increased student achievement and understanding through the new format and provide new avenues for future research
    corecore