1,274 research outputs found
Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble
As the number of spins in an ensemble is reduced, the statistical uctuations
in its polarization eventually exceed the mean thermal polarization. This
transition has now been surpassed in a number of recent nuclear magnetic
resonance experiments, which achieve nanometer-scale detection volumes. Here,
we measure nanometer- scale ensembles of nuclear spins in a KPF6 sample using
magnetic resonance force microscopy. In particular, we investigate the
transition between regimes dominated by thermal and statistical nuclear
polarization. The ratio between the two types of polarization provides a
measure of the number of spins in the detected ensemble
Gluon Condensate and Beyond
We review briefly and in retrospect the development which brought about the
QCD sum rules based on introduction of the gluon condensate (M.A. Shifman, A.I.
Vainshtein, and V.I. Zakharov (1978)).Comment: 15 pages, 5 figures, uses sprocl.sty (included). The 1999 Sakurai
Prize Lectur
Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae)
Variation in genome size of 24 populations belonging to 11 NW Patagonian species of Berberis was analysed as a function of the environment and geographical location. The variation showed three levels of discontinuity, two of which corresponded to diploid species (2n = 28) while the third corresponded to polyploid species (2n = 56). Diploids with DNA content ranging from 1.463 pg to 1.857 pg included Berberis cabrerae, B. chillanensis, B. montana, B. serrato-dentata and B. bidentata. Diploids with DNA content ranging from 2.875 pg to 3.806 pg included B. linearifolia, B. darwinii, B. parodii and B. empetrifolia. The genome size of the polyploid species B. buxifolia and B. heterophylla ranged from 5.809 pg to 6.844 pg. Principal component analysis (PCA) was applied to represent the variability of environmental conditions. The eigenvectors of the principal component axes showed that PCl discriminates the populations according to rainfall, types of vegetation and geomorphology; altitude and latitude, on the other hand, contribute to PC2 and PC3, respectively. From these results it is concluded: (1) that diploids with lower DNA content grow in high-elevation sites having greater rainfall but lower water availability; (2) diploids with higher DNA content are associated with half-elevation forests where the vegetative period is longer, the water availability is greater and the temperatures are higher; and (3) the distribution pattern of polyploids is considerably wider than that of diploids, which are geographically and ecologically restricted to forest areas. These results suggest that the C-value plays an important role in the ability of the species to adapt to different growing conditions.Facultad de Ciencias Agrarias y Forestale
Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae)
Variation in genome size of 24 populations belonging to 11 NW Patagonian species of Berberis was analysed as a function of the environment and geographical location. The variation showed three levels of discontinuity, two of which corresponded to diploid species (2n = 28) while the third corresponded to polyploid species (2n = 56). Diploids with DNA content ranging from 1.463 pg to 1.857 pg included Berberis cabrerae, B. chillanensis, B. montana, B. serrato-dentata and B. bidentata. Diploids with DNA content ranging from 2.875 pg to 3.806 pg included B. linearifolia, B. darwinii, B. parodii and B. empetrifolia. The genome size of the polyploid species B. buxifolia and B. heterophylla ranged from 5.809 pg to 6.844 pg. Principal component analysis (PCA) was applied to represent the variability of environmental conditions. The eigenvectors of the principal component axes showed that PCl discriminates the populations according to rainfall, types of vegetation and geomorphology; altitude and latitude, on the other hand, contribute to PC2 and PC3, respectively. From these results it is concluded: (1) that diploids with lower DNA content grow in high-elevation sites having greater rainfall but lower water availability; (2) diploids with higher DNA content are associated with half-elevation forests where the vegetative period is longer, the water availability is greater and the temperatures are higher; and (3) the distribution pattern of polyploids is considerably wider than that of diploids, which are geographically and ecologically restricted to forest areas. These results suggest that the C-value plays an important role in the ability of the species to adapt to different growing conditions.Facultad de Ciencias Agrarias y Forestale
A Vademecum on Quark-Hadron Duality
We present an elementary introduction to the problem of quark-hadron duality
and its practical limitations, in particular as it concerns local duality
violation in inclusive B meson decays. We show that the accurate definition of
duality violation elaborated over the recent years allows one to derive
informative constraints on violations of local duality. The magnitude of
duality violation is particularly restricted in the total semileptonic widths.
This explains its strong suppression in concrete dynamical estimates. We
analyze the origin of the suppression factors in a model-independent setting,
including a fresh perspective on the Small Velocity expansion. A new
potentially significant mechanism for violation of local duality in
\Gamma_sl(B) is analyzed. Yet we conclude that the amount of duality violation
in \Gamma_sl(B) must be safely below the half percent level, with realistic
estimates being actually much smaller. Violation of local duality in
\Gamma_sl(B) is thus far below the level relevant to phenomenology. We also
present a cautionary note on the B->D^* decay amplitude at zero recoil and show
that it is much more vulnerable to violations of quark-hadron duality than
\Gamma_sl(B). A critical review of some recent literature is given. We point
out that the presently limiting factor in genuinely model-independent
extraction of V_cb is the precise value of the short-distance charm quark mass.
We suggest a direct and precise experimental check of local quark-hadron
duality in semileptonic B->X_c l\nu decays.Comment: 48 pages, 4 figures; LaTe
Constraining Quark-Hadron Duality at Large-Nc
Quark-meson duality for two-point functions of vector and axial-vector QCD
currents is investigated in the large-Nc approximation. We find that the joint
constraints of duality and chiral symmetry imply degeneracy of excited vector
and axial-vector mesons in the large-Nc limit. We compare model-independent
constraints with expectations based on the Veneziano-Lovelace-Shapiro string
model. Several models of duality are constructed, and phenomenological
implications are discussed.Comment: 16 pages TeX, uses mtexsis.te
Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire
Soon after the first measurements of nuclear magnetic resonance (NMR) in a
condensed matter system, Bloch predicted the presence of statistical
fluctuations proportional to in the polarization of an ensemble of
spins. First observed by Sleator et al., so-called "spin noise" has
recently emerged as a critical ingredient in nanometer-scale magnetic resonance
imaging (nanoMRI). This prominence is a direct result of MRI resolution
improving to better than 100 nm^3, a size-scale in which statistical spin
fluctuations begin to dominate the polarization dynamics. We demonstrate a
technique that creates spin order in nanometer-scale ensembles of nuclear spins
by harnessing these fluctuations to produce polarizations both larger and
narrower than the natural thermal distribution. We focus on ensembles
containing ~10^6 phosphorus and hydrogen spins associated with single InP and
GaP nanowires (NWs) and their hydrogen-containing adsorbate layers. We monitor,
control, and capture fluctuations in the ensemble's spin polarization in
real-time and store them for extended periods. This selective capture of large
polarization fluctuations may provide a route for enhancing the weak magnetic
signals produced by nanometer-scale volumes of nuclear spins. The scheme may
also prove useful for initializing the nuclear hyperfine field of electron spin
qubits in the solid-state.Comment: 18 pages, 5 figure
Quark-hadron duality in a relativistic, confining model
Quark-hadron duality is an interesting and potentially very useful
phenomenon, as it relates the properly averaged hadronic data to a perturbative
QCD result in some kinematic regions. While duality is well established
experimentally, our current theoretical understanding is still incomplete. We
employ a simple model to qualitatively reproduce all the features of
Bloom-Gilman duality as seen in electron scattering. In particular, we address
the role of relativity, give an explicit analytic proof of the equality of the
hadronic and partonic scaling curves, and show how the transition from coherent
to incoherent scattering takes place.Comment: This paper is dedicated to the memory of our collaborator Nathan
Isgur. (34 pages, 13 figures
Non-perturbative effects in semi-leptonic B_c decays
We discuss the impact of the soft degrees of freedom inside the B_c meson on
its rate in the semi-leptonic decay B_c -> X l nu_l where X denotes light
hadrons below the D^0 threshold. In particular we identify contributions
involving soft hadrons which are non-vanishing in the limit of massless
leptons. These contributions become relevant for a measurement of the purely
leptonic B_c decay rate, which due to helicity suppression involves a factor
m_l^2 and thus is much smaller than the contributions involving soft hadrons.Comment: LaTeX, 22 pages, 1 figur
Test of the Running of in Decays
The decay rate into hadrons of invariant mass smaller than
can be calculated in QCD assuming global
quark--hadron duality. It is shown that this assumption holds for
~GeV. From measurements of the hadronic mass distribution, the
running coupling constant is extracted in the range
0.7~GeV. At , the result is
. The running of is in good
agreement with the QCD prediction.Comment: 9 pages, 3 figures appended; shortened version with new figures, to
appear in Physical Review Letters (April 1996
- …