38,366 research outputs found

    Entanglement and optimal strings of qubits for memory channels

    Get PDF
    We investigate the problem of enhancement of mutual information by encoding classical data into entangled input states of arbitrary length and show that while there is a threshold memory or correlation parameter beyond which entangled states outperform the separable states, resulting in a higher mutual information, this memory threshold increases toward unity as the length of the string increases. These observations imply that encoding classical data into entangled states may not enhance the classical capacity of quantum channels.Comment: 14 pages, 8 figures, latex, accepted for publication in Physical Review

    On the P-representable subset of all bipartite Gaussian separable states

    Get PDF
    P-representability is a necessary and sufficient condition for separability of bipartite Gaussian states only for the special subset of states whose covariance matrix are Sp(2,R)⊗Sp(2,R)Sp(2,R)\otimes Sp(2,R) locally invariant. Although this special class of states can be reached by a convenient Sp(2,R)⊗Sp(2,R)Sp(2,R)\otimes Sp(2,R) transformation over an arbitrary covariance matrix, it represents a loss of generality, avoiding inference of many general aspects of separability of bipartite Gaussian states.Comment: Final version with new results added. Slightly more detailed than the accepted manuscript (to appear in Phys. Rev. A

    Single photon state generation from a continuous-wave non-degenerate optical parametric oscillator

    Full text link
    We present a theoretical treatment of conditional preparation of one-photon states from a continuous-wave non-degenerate optical parametric oscillator. We obtain an analytical expression for the output state Wigner function, and we maximize the one-photon state fidelity by varying the temporal mode function of the output state. We show that a higher production rate of high fidelity Fock states is obtained if we condition the outcome on dark intervals around trigger photo detection events.Comment: 9 pages, 9 figures, v2: published versio

    Estimating Yield Curves by Kernel Smoothing Methods

    Get PDF
    We introduce a new method for the estimation of discount functions, yield curves and forward curves for coupon bonds. Our approach is nonparametric and does not assume a particular functional form for the discount function although we do show how to impose various important restrictions in the estimation. Our method is based on kernel smoothing and is defined as the minimum of some localized population moment condition. The solution to the sample problem is not explicit and our estimation procedure is iterative, rather like the backfitting method of estimating additive nonparametric models. We establish the asymptotic normality of our methods using the asymptotic representation of our estimator as an infinite series with declining coefficients. The rate of convergence is standard for one dimensional nonparametric regression.Coupon bonds; forward curve; Hilbert space; local linear; nonparametric regression; yield curve

    One qubit almost completely reveals the dynamics of two

    Get PDF
    From the time dependence of states of one of them, the dynamics of two interacting qubits is determined to be one of two possibilities that differ only by a change of signs of parameters in the Hamiltonian. The only exception is a simple particular case where several parameters in the Hamiltonian are zero and one of the remaining nonzero parameters has no effect on the time dependence of states of the one qubit. The mean values that describe the initial state of the other qubit and of the correlations between the two qubits also are generally determined to within a change of signs by the time dependence of states of the one qubit, but with many more exceptions. An example demonstrates all the results. Feedback in the equations of motion that allows time dependence in a subsystem to determine the dynamics of the larger system can occur in both classical and quantum mechanics. The role of quantum mechanics here is just to identify qubits as the simplest objects to consider and specify the form that equations of motion for two interacting qubits can take.Comment: 6 pages with new and updated materia

    Kondo Quantum Dots and the Novel Kondo-doublet interaction

    Full text link
    We analyze the interactions between two Kondo Quantum Dots connected to a Rashba-active Quantum Wire. We find that the Kondo-doublet interaction, at an inter-dot distance of the order of the wire Fermi length, is over an order of magnitude greater than the RKKY interaction. The effects induced on the Kondo-doublet interaction by the wire spin-orbit coupling can be used to control the Quantum Dots spin-spin correlation. These results imply that the widely used assumption that the RKKY is the dominant interaction between Anderson impurities must be revised.Comment: 4 pages, 4 figs, accepted for publication in PRL. title changed and text polishe

    Universal and deterministic manipulation of the quantum state of harmonic oscillators: a route to unitary gates for Fock State qubits

    Full text link
    We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two-by-two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic and state-independent manipulation of the harmonic oscillator quantum state.Comment: 4 pages, 4 figure

    Entanglement versus mixedness for coupled qubits under a phase damping channel

    Full text link
    Quantification of entanglement against mixing is given for a system of coupled qubits under a phase damping channel. A family of pure initial joint states is defined, ranging from pure separable states to maximally entangled state. An ordering of entanglement measures is given for well defined initial state amount of entanglement.Comment: 9 pages, 2 figures. Replaced with final published versio

    Analysis of a convenient information bound for general quantum channels

    Full text link
    Open questions from Sarovar and Milburn (2006 J.Phys. A: Math. Gen. 39 8487) are answered. Sarovar and Milburn derived a convenient upper bound for the Fisher information of a one-parameter quantum channel. They showed that for quasi-classical models their bound is achievable and they gave a necessary and sufficient condition for positive operator-valued measures (POVMs) attaining this bound. They asked (i) whether their bound is attainable more generally, (ii) whether explicit expressions for optimal POVMs can be derived from the attainability condition. We show that the symmetric logarithmic derivative (SLD) quantum information is less than or equal to the SM bound, i.e.\ H(θ)≤CΥ(θ)H(\theta) \leq C_{\Upsilon}(\theta) and we find conditions for equality. As the Fisher information is less than or equal to the SLD quantum information, i.e. FM(θ)≤H(θ)F_M(\theta) \leq H(\theta), we can deduce when equality holds in FM(θ)≤CΥ(θ)F_M(\theta) \leq C_{\Upsilon}(\theta). Equality does not hold for all channels. As a consequence, the attainability condition cannot be used to test for optimal POVMs for all channels. These results are extended to multi-parameter channels.Comment: 16 pages. Published version. Some of the lemmas have been corrected. New resuts have been added. Proofs are more rigorou
    • …
    corecore