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P-representability is a necessary and sufficient condition for separability of bipartite Gaussian states only for
the special subset of states whose covariance matrix are Sps2,Rd ^ Sps2,Rd locally invariant. Although this
special class of states can be reached by a convenient Sps2,Rd ^ Sps2,Rd transformation over an arbitrary
covariance matrix, it represents a loss of generality, avoiding inference of many general aspects of separability
of bipartite Gaussian states.
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In the recent years the question to whether a given quan-
tum state is separable or entangled has become central to the
quantum information and to the quantum optics communi-
ties. Mostly because fault-tolerant quantum information pro-
tocols, such as quantum computation and quantum teleporta-
tion are completely dependent on the ability to prepare pure
(or close to pure) entangled states[1]. Recent attention how-
ever has been centered on continuous variable versions of
quantum communication protocols, such as the unconditional
quantum teleportation[2,3], whose efficiency rests on the
ability to generate entangled states of systems with infinite
dimensional Hilbert spaces. Bipartite systems with finite Hil-
bert space have been exhaustively investigated in order to
achieve a precise quantification of entanglement. Peres[4]
and Horodecki[5] demonstrated that a necessary and suffi-
cient condition for separability of bipartite systems with Hil-
bert spaces of dimensionø2^ 3 is the positivity of the par-
tial transpose of the system density matrix. On the other
hand, algebraic similarities between bipartite states with Hil-
bert space of dimension 2̂2 and bipartite Gaussian states
(described by 434 covariance matrices) allow the extension
of the positivity criterion to those special continuous variable
states as developed in Refs[6,7], and considered afterwards
in discussions on entanglement of Gaussian bipartite states
(e.g., Refs.[8–18]).

Of particular importance is the connection between
GlauberP representability of a bipartite quantum state and
separability[10]. A P-representable state is the one that is
represented by a positive GlauberP-distribution function
Psa ,bd, which is less(or equally) singular than the delta
distribution, such as

r =E da2 db2 Psa,bdua,blka,bu. s1d

Under this conditionPsa ,bd assumes the structure of a le-
gitimate probability distribution function over an ensemble
of states, allowing the connection between separability and
classicality. However, although anyP-representable bipartite
state is separable, as can be immediately seen by the
P-representation definition, the inverse is not necessarily

true. P representability and separability are completely
equivalent only for Gaussian states with locally Sps2,Rd
^ Sps2,Rd invariant covariance matrices. Since any covari-
ance matrix can be brought to this invariant form under ap-
propriate Sps2,Rd ^ Sps2,Rd transform, P representability
and separability have been misleadingly accepted as one-to-
one equivalent properties of bipartite Gaussian states. The
purpose of the present paper is to give a complete classifica-
tion of the set of all bipartite Gaussian separable states
(BGSS). Particularly we show thatP-representable Gaussian
bipartite states form a subset of BGSS with locally
Sps2,Rd ^ Sps2,Rd invariant form. We begin by revising
some necessary properties of bipartite Gaussian states and
give the necessary and sufficient conditions for the state to
be separable. Next we discuss theP representability of those
states and show that they actually form a subset of the sepa-
rable states. We then provide the unitary Sps2,Rd
^ Sps2,Rd map connecting the two sets.

Any bipartite quantum stater is Gaussian(see, e.g., Refs.
[17,19]) if its symmetric characteristic function is given by

Cshd=TrfDshdrg=e−1
2

h†Vh, where Dshd=e−h†Ev is a dis-
placement operator in the parameter four-vectorh space,
with h†=sh1

* ,h1,h2
* ,h2d, v†=sa1

†,a1,a2
†,a2d, being a1 sa1

†d
and a2 sa2

†d the annihilation(creation) operators for party 1
and 2, respectively. Here,

E = SZ 0

0 Z
D, Z = S1 0

0 − 1
D , s2d

and V is the Hermitian 434 covariance matrix with ele-
mentsVij =s−1di+jkhvi ,v j

†jl /2,

V = SV1 C

C† V2
D =1

n1 m1 ms mc

m1
* n1 mc

* ms
*

ms
* mc n2 m2

mc
* ms m2

* n2

2 , s3d

where V1 and V2 are Hermitian matrices containing only
local elements whileC is the correlation between the two
parties. Any covariance matrix must be positive semidefinite
sV ù0d, furthermore the generalized uncertainty principle,
V + 1

2Eù0, must hold. Those general positivity criteria can
be decomposed into block using matrix positivity properties.*Electronic address: marcos@ifi.unicamp.br
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A reliable and convenient way to check the covariance ma-
trix positivity is through the following block Schur decom-
position[20]: Any Hermitian matrix is positive if and only if
any principal block matrix is also positive, or, if its upper left
block and the block’s Schur complement are also positive.
So that for the covariance matrix(3), V ù0 only if

V1 ù 0, s4d

and the Schur complement ofV1,

SsV1d ; V2 − C†sV1d−1C ù 0. s5d

It is interesting to observe that the Schur complement of
block matrices representing Gaussian states covariances,
such as above, embodies a manifestation of a physical opera-
tion when considering partial projections onto Gaussian
states[21,22].

Through the Schur decomposition the physical positivity
criterion applies only if

V1 + 1
2Z ù 0 s6d

and

sV2 + 1
2Zd − C†sV1 + 1

2Zd−1C ù 0. s7d

Explicitly, the generalized uncertainty(6) and (7) further
simplify to

n1 ù Îum1u2 + 1
4 s8d

and

n2 ù
s

d
+Î1

4
F uumcu2 − umsu2u

d
− 1G2

+ um2 − cu2, s9d

respectively, withs=n1sumcu2+ umsu2d−mcmsm1
* −mc

*ms
*m1, c

=2n1ms
*mc−mc

2m1
* −sms

*d2m1, d=n1
2− 1

4 − um1u2.
By mapping the positivity necessary and sufficient condi-

tion for dimension 2̂ 2 to bipartite systems of infinite di-
mension, Simon[6] has discovered an elegant geometrical
interpretation of separability in terms of the Wigner distribu-
tion function for the density operator. The Peres-Horodecki
separability criterion in the Simon framework reads:if a bi-
partite density operator is separable, then its Wigner distri-
bution necessarily goes over into a Wigner distribution un-
der a phase space mirror reflection. The separability
criterion can be understood as a valid Wigner-class-
conservative quantum map under local time reversal. Fol-
lowing Ref. [6] a necessary and sufficient condition for a
Gaussian quantum state to be separable,r=okpkrk

A
^ rk

B, is

that its covariance matrix must satisfyṼ + 1
2Eù0, under a

partial phase space mirror reflection(partial Hermitian con-

jugation) Ṽ =TVT : sTvd†=vT
†=sa1

†,a1,a2,a2
†d, with

T = S I 0

0 X
D, X = S0 1

1 0
D , s10d

otherwise the state is entangled. Similarly to the generalized
uncertainty decomposition, the separability condition is sat-
isfied if and only if (6) and

sXV 2X + 1
2Zd − XC†sV1 + 1

2Zd−1CX ù 0, s11d

are both satisfied, which explicitly implies in(8) and

n2 ù
s

d
+Î1

4
F uumcu2 − umsu2u

d
+ 1G2

um2 − cu2, s12d

respectively. We call the set of statesr that fall inside(8) and
(12) the set BGSS of all bipartite Gaussian separable statesS.
Any state that does not fall inside the region bounded by
those inequalities is entangled, being it pure or not. Purity is
only reached when the equalities in(8) and (9) hold.

The very definition of a separable state can be written in a
coherent state representation through the GlauberP-function
(1), but it is not obvious thatPsa ,bd is a legitimate prob-
ability distribution function. That is only true if the state isP
representable, i.e., if theP function is non-negative and less
(or equally) singular than the delta distribution. In terms of
the covariance matrix, a quantum state isP-representable
[19] if

V − 1
2I ù 0, s13d

which in terms of the upper left block matrix and its Schur
complement writes as

V1 − 1
2I ù 0 s14d

and

sV2 − 1
2I d − C†sV1 − 1

2I d−1C ù 0. s15d

Thus

n1 ù um1u + 1
2 s16d

and

n2 ù
s8

d8
+

um2 − c8u
d8

+
1

2
, s17d

with s8= sn1− 1
2

dsumcu2+ umsu2d−mcmsm1
* −mc

*ms
*m1, c8=2sn1

− 1
2

dms
*mc−mc

2m1
* −sms

*d2m1, d8= sn1− 1
2

d2− um1u2. States that
follow (16) and (17) form the set of all bipartite
P-representable Gaussian statesP.

Englert and Wódkiewicz[10] have recently stated thatP
representability is equivalent to the separability condition,
for the specific symmetric situation wherem1=m2=ms=0,
n1=n2=n, and mc=m, which indeed setP
S as we see
below. The generality of their statement is justified only if
Sps2,Rd ^ Sps2,Rd local operations are used to bring those
parameters to the special symmetric class mentioned above
(see also Ref.[19]). However, this particular situation does
not represent total equivalence betweenS and the set of all
P-representable states. In general theP-representability con-
ditions, (16) and (17), are more restrictive than the separa-
bility ones,(8) and(12), respectively, as we now investigate.

First observe that(8) is less restrictive than(16), equaling
only for um1u=0 or um1u→`, being enough to check if(17)
dominates over(12) for the simplestum1u=0 situation. For
that we make use of the knowledge that(9) is always stron-
ger than(17), including the situation whered=0, i.e., n1
=1/2. In such a case, the comparisons of the(17) lower
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bound to(12) and to (9) are equivalent and thus if(12) is
violated so is(9). These inequalities must satisfy

sum2u + umcu2dsum2u + umsu2d ù 0, s18d

and since the quantities involved are always strictly positive
the criterion(18) is always satisfied. The equality however
occurs only ifum2u= umcu2=0 or um2u= umsu2=0, which then set
the equivalenceP
S for the two following special
Sps2,Rd ^ Sps2,Rd invariant forms forV of Eq. (3).

Invariant form 1,

V i = niI , i = 1,2; andC = S 0 mc

mc
* 0

D . s19d

Invariant form 2,

V i = niI , i = 1,2; andC = Sms 0

0 ms
* D . s20d

Special forms 1 and 2 are locally Sps2,Rd ^ Sps2,Rd invari-
ant covariance matrices that form theP
S subset. The
separability and thusP-representability criterion is then re-
duced tosn1− 1

2
dsn2− 1

2
dù umsc,sdu2, for the special form 1 or 2,

respectively, while the physical condition of existence of a
general bipartite Gaussian state of the form 1 or 2 writes as
sn1− 1

2
dsn2+ 1

2
dù umsc,sdu2, respectively.

Remark 1: There areP-representable Gaussian operators
that violate(9), which however do not represent any valid
positive definite quantum state. As an example Fig. 1 shows
the comparison of the limiting bounds(12) and(17), assum-
ing all real coefficients and settingm1=0.5 andm2=1. Only
those states that lay in or above the separable class boundary
are validP-representable separable states.

Remark 2: The special symmetric situation depicted in
Refs. [10,13] for the two-mode thermal squeezed state,
wherem1=m2=ms=0, n1=n2=n, andmc=m, is a particular
example of the specific form 1, and thus a separable state in
this case is alwaysP representable.

Any general covariance matrix can be mapped into one of
those invariant forms under appropriate Sps2,Rd ^ Sps2,Rd
transform. In other words, it is possible to mapS into P such

that rSp=ULrGUL
−1 be the state obtained by the local unitary

transform UL=U1 ^ U2 over a general bipartite Gaussian
density operatorrG assuming

ULvUL
−1 = SLv, SL = SS1 0

0 S2
D , s21d

with the conditionSL
−1=ESL

†E. The new symmetric char-
acteristic function writes as CSpshd=TrfDshdrSpg
=TrfUL

−1DshdULrGg=e−1
2

h†VSph, with

VSp= SL
†VSL . s22d

The transformed covariance matrix writes as(3), but with
new block elements

Vi8 = Si
†ViSi, C8 = S1

†CS2. s23d

Assuming a local Sps2,Rd transform as

Si ; Seifi coshui eiwi sinhui

e−iwi sinhui e−ifi coshui
D , s24d

the condition to bringV to the invariant form 1, with non-
null elementssVi8d1,1=sVi8d2,2=ni, andC81,2=sC2,18 d* = mc, is
obtained by settingfi +wi =−mi +p and tanh 2ui = umiu /ni
= umcu / umsu, for i =1,2, respectively, wheree−imi =mi / umiu, for
umcuù umsu.

Now the condition to bringV to the invariant form 2, with
non-null elementssVi8d1,1=sVi8d2,2=ni, and C81,1=sC2,28 d*
=ms, is immediately attained iffi +wi =−mi +p also, but now
with tanh 2ui = umiu /ni = umsu / umcu (assuming umcuø umsu).
Since bothV18 andV18 are proportional to the identity, they
do not change under unitary local rotations and the two in-
variant forms are then connected through those operations.
As such, the last two conditions onumcu and umsu can be
waved by appropriate rotations.

The new transformed elements are

ni = Îni
2 − umiu2, ms = e−iF ms

umsu
Îumsu2 − umcu2 s25d

(for umcuø umsu), with F=sf1−f2d and

mc = e−iF8 mc

umcu
Îumcu2 − umsu2, s26d

(for umcuù umsu), with F8=sf1+f2d, which then turn explicit
the four invariants of the Sps2,Rd ^ Sps2,Rd group:
I1=detV18, I2=detV28, I3=detC8, and I4
=TrfV18ZC8ZV 28ZsC8d†Zg.

The general Sps2,Rd ^ Sps2,Rd transformation(22) of the
(24) form is reached through the squeezing operationUL
=U1 ^ U2,

Ui = eis"t/2dskiai
†2

eiwi−ki
*ai

2e−iwid, s27d

over the bipartite Gaussian staterG, with ukiut=ui ;2r i, the
squeezing parameter associated with the transformation on
the modei andeifi =ki / ukiu. An important result is that while
all the BGSS set can be mapped into theP-representable set
by suitable Sps2,Rd ^ Sps2,Rd transforms, it is not possible
to restitute the original matricesV1 andV2 with unitary ro-

FIG. 1. Typical separabilitysSd and P-representabilitysPd
boundaries form1=0.5 and m2=1. The shaded area where the
P-fold is lower than theS-fold does not represent physical quantum
states.
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tations. That is only reached applying over the squeezing
operation. This is immediate from the two invariant forms.
Since both covariances reduced matricesV18 andV28 are pro-
portional to the identity, unitary rotations transform the in-
variant forms among themselves.

Remark 3:Through the above mapping, we have reached
the special subset of locally Sps2,Rd ^ Sps2,Rd invariant
forms S�P. However the BGSS can be set equivalent(in
principle) to specialP-representable subsetsS→Pd under an
appropriate nonlocal operation: Let the separability condition
be written in the equivalent form

V + 1
2TET ù 0. s28d

Now let UNL be a nonlocal operation,UNLvUNL
† =Mv , where

M is a general transformation matrix,M PSps4,Rd. Such a
generalM , when acting on(28) must leaveV invariant in
form sV8d, while M †TETM must go necessarily to −I , such
that (28) writes as V8− 1

2I ù0, i.e., the transformed
P-representability condition. The Stone-von Neumann theo-
rem provides that ifM exists it must be unitarily implement-

able [23]. Finding the correspondingUNL operator may not
be a simple exercise, however, and we leave this point for
future research.

In conclusion, we have derived a complete description of
bipartite Gaussian separable states, and have proved that
P-representable states form a subset of the set of all bipartite
Gaussian separable states, existent only under special sym-
metry of the covariance matrix. We can state that for positive
definite bipartite Gaussian operators, which describe physical
quantum states,P representability is a necessary and suffi-
cient condition for separability only for the subset of locally
Sps2,Rd ^ Sps2,Rd invariant Gaussian states[24]. In general
P#S.
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