3,215 research outputs found

    Closed-Flux Solutions to the Constraints for Plane Gravity Waves

    Full text link
    The metric for plane gravitational waves is quantized within the Hamiltonian framework, using a Dirac constraint quantization and the self-dual field variables proposed by Ashtekar. The z axis (direction of travel of the waves) is taken to be the entire real line rather than the torus (manifold coordinatized by (z,t) is RxR rather than S1S_1 x R). Solutions to the constraints proposed in a previous paper involve open-ended flux lines running along the entire z axis, rather than closed loops of flux; consequently, these solutions are annihilated by the Gauss constraint at interior points of the z axis, but not at the two boundary points. The solutions studied in the present paper are based on closed flux loops and satisfy the Gauss constraint for all z.Comment: 18 pages; LaTe

    Energy and directional signatures for plane quantized gravity waves

    Get PDF
    Solutions are constructed to the quantum constraints for planar gravity (fields dependent on z and t only) in the Ashtekar complex connection formalism. A number of operators are constructed and applied to the solutions. These include the familiar ADM energy and area operators, as well as new operators sensitive to directionality (z+ct vs. z-ct dependence). The directionality operators are quantum analogs of the classical constraints proposed for unidirectional plane waves by Bondi, Pirani, and Robinson (BPR). It is argued that the quantum BPR constraints will predict unidirectionality reliably only for solutions which are semiclassical in a certain sense. The ADM energy and area operators are likely to have imaginary eigenvalues, unless one either shifts to a real connection, or allows the connection to occur other than in a holonomy. In classical theory, the area can evolve to zero. A quantum mechanical mechanism is proposed which would prevent this collapse.Comment: 54 pages; LaTe

    Plane waves in quantum gravity: breakdown of the classical spacetime

    Get PDF
    Starting with the Hamiltonian formulation for spacetimes with two commuting spacelike Killing vectors, we construct a midisuperspace model for linearly polarized plane waves in vacuum gravity. This model has no constraints and its degrees of freedom can be interpreted as an infinite and continuous set of annihilation and creation like variables. We also consider a simplified version of the model, in which the number of modes is restricted to a discrete set. In both cases, the quantization is achieved by introducing a Fock representation. We find regularized operators to represent the metric and discuss whether the coherent states of the quantum theory are peaked around classical spacetimes. It is shown that, although the expectation value of the metric on Killing orbits coincides with a classical solution, its relative fluctuations become significant when one approaches a region where null geodesics are focused. In that region, the spacetimes described by coherent states fail to admit an approximate classical description. This result applies as well to the vacuum of the theory.Comment: 11 pages, no figures, version accepted for publication in Phys. Rev.

    Imaging Polarimeter Arrays for Near-Millimeter Waves

    Get PDF
    An integrated-circuit antenna array has been developed that images both polarization and intensity. The array consists of a row of antennas that lean alternately left and right, creating two interlaced sub-arrays that respond to different polarizations. The arrays and the bismuth bolometer detectors are made by a photoresist shadowing technique that requires only one photolithographic mask. The array has measured polarization at a wavelength of 800 µm with an absolute accuracy of 0.8° and a relative precision of 7 arc min. and has demonstrated nearly diffraction-Iimited resolutiort of a 20° step in polarization

    Local Ferroelectricity in SrTiO_3 Thin Films

    Full text link
    The temperature-dependent polarization of SrTiO_3 thin films is investigated using confocal scanning optical microscopy. A homogeneous out-of-plane and inhomogeneous in-plane ferroelectric phase are identified from images of the linear electrooptic response. Both hysteretic and non-hysteretic behavior are observed under a dc bias field. Unlike classical transitions in bulk ferroelectrics, local ferroelectricity is observed at temperatures far above the dielectric permittivity maximum. The results demonstrate the utility of local probe experiments in understanding inhomogeneous ferroelectrics.Comment: 8 pages, 3 figures, accepted for publication in PR

    Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Get PDF
    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface

    Quantization of pure gravitational plane waves

    Get PDF
    Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that generates the time evolution of this model turns out to vanish, so that all relevant information is contained in the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation and creation like variables. We finally quantize the linearly polarized model by introducing a Fock representation for these variables.Comment: 11 pages, Revtex, no figure

    Test particles behavior in the framework of a lagrangian geometric theory with propagating torsion

    Full text link
    Working in the lagrangian framework, we develop a geometric theory in vacuum with propagating torsion; the antisymmetric and trace parts of the torsion tensor, considered as derived from local potential fields, are taken and, using the minimal action principle, their field equations are calculated. Actually these will show themselves to be just equations for propagating waves giving torsion a behavior similar to that of metric which, as known, propagates through gravitational waves. Then we establish a principle of minimal substitution to derive test particles equation of motion, obtaining, as result, that they move along autoparallels. We then calculate the analogous of the geodesic deviation for these trajectories and analyze their behavior in the nonrelativistic limit, showing that the torsion trace potential Ď•\phi has a phenomenology which is indistinguishable from that of the gravitational newtonian field; in this way we also give a reason for why there have never been evidence for it.Comment: 12 pages, no figures, to appear on Int. Journ. Mod. Phys.

    Participating in a fruit and vegetable intervention trial improves longer term fruit and vegetable consumption and barriers to fruit and vegetable consumption: A follow-up of the ADIT study

    Get PDF
    Background: Fruit and vegetable (FV) based intervention studies can be effective in increasing short term FV consumption. However, the longer term efficacy of such interventions is still unclear. The aim of the current study was to examine the maintenance of change in FV consumption 18-months after cessation of a FV intervention and to examine the effect of participating in a FV intervention on barriers to FV consumption. Methods: A follow-up of a randomised controlled FV trial in 83 older adults (habitually consuming ≤2 portions/day) was conducted. At baseline, participants were assigned to continue consuming ≤2 portions FV/day or consume ≥5 portions FV/day for 16-weeks. We assessed FV intake and barriers to FV consumption at baseline, end of intervention and 18-months post-intervention. Results: At 18-months, mean FV intakes in both groups were greater than baseline. The 5 portions/day group continued to show greater increases in FV consumption at 18-months than the 2 portions/day group (p < 0.01). At 18-months, both groups reported greater liking (p < 0.01) and ease in consuming FV (p = 0.001) while difficulties with consuming FV decreased (p < 0.001). The 2 portions/day group reported greater awareness of FV recommendations at 18-months (p < 0.001). Conclusions: Participating in a FV intervention can lead to longer-term positive changes in FV consumption regardless of original group allocation. Trial registration: Clinical Trials.gov NCT00858728
    • …
    corecore