168 research outputs found

    4f spin density in the reentrant ferromagnet SmMn2Ge2

    Full text link
    The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by magnetic Compton scattering in both the low and high temperature ferromagnetic phases. At low temperature, the Sm site is shown to possess a large 4f spin moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total magnetic moment. At high temperature, the data show conclusively that ordered magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.

    Resonant X-Ray Magnetic Scattering from CoO

    Full text link
    We analyze the recent experiment [W. Neubeck {\em et al.}, Phys. Rev. B \vol(60,1999,R9912)] for the resonant x-ray magnetic scattering (RXMS) around the K edge of Co in the antiferromagnet CoO. We propose a mechanism of the RXMS to make the 4p4p states couple to the magnetic order: the intraatomic exchange interaction between the 4p4p and the 3d3d states and the pp-dd mixing to the 3d3d states of neighboring Co atoms. These couplings induce the orbital moment in the 4p4p states and make the scattering tensor antisymmetric. Using a cluster model, we demonstrate that this modification gives rise to a large RXMS intensity in the dipole process, in good agreement with the experiment. We also find that the pre-edge peak is generated by the transition to the 3d3d states in the quadrupole process, with negligible contribution of the dipole process. We also discuss the azimuthal angle dependence of the intensity.Comment: 15 pages, 8 figure

    Unquenched large orbital magnetic moment in NiO

    Full text link
    Magnetic properties of NiO are investigated by incorporating the spin-orbit interaction in the LSDA+U scheme. It is found that the large part of orbital moment remains unquenched in NiO. The orbital moment contributes about mu_L = 0.29 mu_B to the total magnetic moment of M = 1.93 mu_B, as leads to the orbital-to-spin angular momentum ratio of L/S = 0.36. The theoretical values are in good agreement with recent magnetic X-ray scattering measurements.Comment: 4 pages, 2 figure

    Resonant X-Ray Scattering from URu_{2}Si_{2}

    Full text link
    Based on a localized crystal electric field model for the U^{4+} in the (5f)^2-configuration, we analyze the resonant x-ray scattering spectra around U M_{IV} and M_{V} edges in URu_{2}Si_{2}, taking full Coulomb and spin-orbit interactions into account. We consider two level schemes, a singlet model of Santini and Amoretti and a doublet model of Ohkawa and Shimizu, and assume the antiferroquadrupolar order and the antiferromagnetic order as candidates for the ambient pressure phase and the high pressure phase. It is found that the spectral shapes as a function of photon energy are independent of the assumed level scheme, but are quite different between the antiferroquadrupole and antiferromagnetic phases, This may be useful to determine the character of the ordered phase.Comment: 8 pages, 5 figures, submitted to JPS

    First-principles modeling of the polycyclic aromatic hydrocarbons reduction

    Full text link
    Density functional theory modelling of the reduction of realistic nanographene molecules (C42H18, C48H18 and C60H24) by molecular hydrogen evidences for the presence of limits in the hydrogenation process. These limits caused the contentions between three-fold symmetry of polycyclic aromatic hydrocarbon molecules and two-fold symmetry of adsorbed hydrogen pairs. Increase of the binding energy between nanographenes during reduction is also discussed as possible cause of the experimentally observed limited hydrogenation of studied nanographenes.Comment: 18 pages, 7 figures, accepted to J. Phys. Chem.

    A joint physics and radiobiology DREAM team vision - Towards better response prediction models to advance radiotherapy.

    Get PDF
    Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material

    World Heart Federation Roadmap on Atrial Fibrillation - A 2020 Update

    Get PDF
    The World Heart Federation (WHF) commenced a Roadmap initiative in 2015 to reduce the global burden of cardiovascular disease and resultant burgeoning of healthcare costs. Roadmaps provide a blueprint for implementation of priority solutions for the principal cardiovascular diseases leading to death and disability. Atrial fibrillation (AF) is one of these conditions and is an increasing problem due to ageing of the world’s population and an increase in cardiovascular risk factors that predispose to AF. The goal of the AF roadmap was to provide guidance on priority interventions that are feasible in multiple countries, and to identify roadblocks and potential strategies to overcome them. Since publication of the AF Roadmap in 2017, there have been many technological advances including devices and artificial intelligence for identification and prediction of unknown AF, better methods to achieve rhythm control, and widespread uptake of smartphones and apps that could facilitate new approaches to healthcare delivery and increasing community AF awareness. In addition, the World Health Organisation added the non-vitamin K antagonist oral anticoagulants (NOACs) to the Essential Medicines List, making it possible to increase advocacy for their widespread adoption as therapy to prevent stroke. These advances motivated the WHF to commission a 2020 AF Roadmap update. Three years after the original Roadmap publication, the identified barriers and solutions were judged still relevant, and progress has been slow. This 2020 Roadmap update reviews the significant changes since 2017 and identifies priority areas for achieving the goals of reducing death and disability related to AF, particularly targeted at low-middle income countries. These include advocacy to increase appreciation of the scope of the problem; plugging gaps in guideline management and prevention through physician education, increasing patient health literacy, and novel ways to increase access to integrated healthcare including mHealth and digital transformations; and greater emphasis on achieving practical solutions to national and regional entrenched barriers. Despite the advances reviewed in this update, the task will not be easy, but the health rewards of implementing solutions that are both innovative and practical will be great

    Tobacco control policies in hospitals before and after the implementation of a national smoking ban in Catalonia, Spain

    Get PDF
    Background: Diverse projects and guidelines to assist hospitals towards the attainment of comprehensive smoke-free policies have been developed. In 2006, Spain government passed a new smoking ban that reinforce tobacco control policies and banned completely smoking in hospitals. This study assesses the progression of tobacco control policies in the Catalan Network of Smokefree Hospitals before and after a comprehensive national smoking ban. Methods: We used the Self-Audit Questionnaire of the European Network for Smoke-free Hospitals to score the compliance of 9 policy standards (global score = 102). We used two crosssectional surveys to evaluate tobacco control policies before (2005) and after the implementation of a national smoking ban (2007) in 32 hospitals of Catalonia, Spain. We compared the means of the overall score in 2005 and 2007 according to the type of hospital, the number of beds, the prevalence of tobacco consumption, and the number of years as a smoke-free hospital. Results: The mean of the implementation score of tobacco control policies was 52.4 (95% CI:45.4-59.5) in 2005 and 71.6 (95% CI: 67.0-76.2) in 2007 with an increase of 36.7% (p 300 beds (41.1% increase; p < 0.01), hospitals with employees' tobacco consumption prevalence 35-39% (72.2% increase; p < 0.05) and hospitals that had recently implemented smoke-free policies (74.2% increase; p < 0.01). Conclusion: The national smoking ban appears to increase tobacco control activities in hospitals combined with other non-bylaw initiatives such as the Smoke-free Hospital Network
    corecore