3,289 research outputs found

    Universality in the Electroproduction of Vector Mesons

    Full text link
    We study universality in the electroproduction of vector mesons using a unified nonperturbative approach which has already proved to reproduce extremely well the available experimental data. In this framework, after the extraction of factors that are specific of each vector meson, we arrive at a reduced integrated elastic cross section which is universal. Our calculations suggest a finite infrared behavior for the strong coupling constant.Comment: 22 pages, 10 figure

    Evaluating matrix elements relevant to some Lorenz violating operators

    Get PDF
    Carlson, Carone and Lebed have derived the Feynman rules for a consistent formulation of noncommutative QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of the quark level operator (gamma.p - m) in a nucleon. In this paper we calculate the matrix element of (gamma.p - m), using a variety of confinement potential models. Our results are within an order of magnitude agreement with the estimate made by Carlson et al. The constraints placed on the noncommutativity parameter were very strong, and are still quite severe even if weakened by an order of magnitude.Comment: 4 pages, 3 figures, RevTex, minor change

    Chemotactic Collapse and Mesenchymal Morphogenesis

    Full text link
    We study the effect of chemotactic signaling among mesenchymal cells. We show that the particular physiology of the mesenchymal cells allows one-dimensional collapse in contrast to the case of bacteria, and that the mesenchymal morphogenesis represents thus a more complex type of pattern formation than those found in bacterial colonies. We finally compare our theoretical predictions with recent in vitro experiments

    Flavor Asymmetry of the Nucleon Sea: Consequences for Dilepton Production

    Full text link
    Parton distributions derived from a chiral quark model that generates an excess of down quarks and antiquarks in the proton's sea satisfactorily describe the measured yields of muon pairs produced in proton-nucleus collisions. Comparison of dilepton yields from hydrogen and deuterium targets promises greater sensitivity to the predicted flavor asymmetry.Comment: 11 pages, REVTEX, (Three PostScript figures available by anonymous ftp from fnth06.fnal.gov in directory /pub/Fermilab-Pub/92.264.) FERMILAB-PUB-92/264--T LBL-3298

    Invariant mass distributions in cascade decays

    Full text link
    We derive analytical expressions for the shape of the invariant mass distributions of massless Standard Model endproducts in cascade decays involving massive New Physics (NP) particles, D -> Cc -> Bbc -> Aabc, where the final NP particle A in the cascade is unobserved and where two of the particles a, b, c may be indistinguishable. Knowledge of these expressions can improve the determination of NP parameters at the LHC. The shape formulas are composite, but contain nothing more complicated than logarithms of simple expressions. We study the effects of cuts, final state radiation and detector effects on the distributions through Monte Carlo simulations, using a supersymmetric model as an example. We also consider how one can deal with the width of NP particles and with combinatorics from the misidentification of final state particles. The possible mismeasurements of NP masses through `feet' in the distributions are discussed. Finally, we demonstrate how the effects of different spin configurations can be included in the distributions.Comment: 39 pages, 14 figures (colour), JHEP clas

    Constraining CP Violating Phases of the MSSM

    Full text link
    Possible CP violation in supersymmetric (SUSY) extensions of the Standard Model (SM) is discussed. The consequences of CP violating phases in the gaugino masses, trilinear soft supersymmetry-breaking terms and the `mu' parameter are explored. Utilizing the constraints on these parameters from electron and neutron electric dipole moments, possible CP violating effects in B-physics are shown. A set of measurements from the B-system which would overconstrain the above CP violating phases is illustrated.Comment: 14 pages, 6 figure

    Non-perturbative effects and the resummed Higgs transverse momentum distribution at the LHC

    Full text link
    We investigate the form of the non-perturbative parameterization in both the impact parameter (b) space and transverse momentum (p_T) space resummation formalisms for the transverse momentum distribution of single massive bosons produced at hadron colliders. We propose to analyse data on Upsilon hadroproduction as a means of studying the non-perturbative contribution in processes with two gluons in the initial state. We also discuss the theoretical errors on the resummed Higgs transverse momentum distribution at the LHC arising from the non-perturbative contribution.Comment: 22 pages, 10 figure

    Influence of Gravity on noncommutative Dirac equation

    Full text link
    In this paper, we investigate the influence of gravity and noncommutativity on Dirac equation. By adopting the tetrad formalism, we show that the modified Dirac equation keeps the same form. The only modification is in the expression of the covariant derivative. The new form of this derivative is the product of its counterpart given in curved space-time with an operator which depends on the noncommutative θ\theta-parameter. As an application, we have computed the density number of the created particles in presence of constant strong electric field in an anisotropic Bianchi universe.Comment: 9 pages, correct some miprints, Accepted for publication in journal of Mod. Phys. Letters

    Benthic meiofaunal community response to the cascading effects of herbivory within an algal halo system of the Great Barrier Reef

    Get PDF
    © 2018 Ollivier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (?m) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways
    corecore