2,917 research outputs found

    Wave Dragon:a slack moored wave energy converter

    Get PDF

    Ionospheric Currents and F-Region Plasma Boundaries Near the Dayside Cusp

    Get PDF
    Observational evidence of the location of a dayside high‐latitude ionospheric current (DPY current) with respect to the different regimes of the high‐latitude magnetosphere is obtained by analyzing data from the magnetometer chain along the west coast of Greenland in conjunction with simultaneous measurements from the newly established incoherent‐scatter radar facility at Sondre Stromfjord. The latitudinal location of the DPY current is compared with the location of the maximum F‐region electron temperature and with the location of the plasma convection reversal from sunward to antisunward. The maximum in the F‐region electron temperature roughly coincides with the velocity reversal boundary, while the DPY current is always located more poleward, penetrating deep into the polar cap. When UT variations are examined, a correlation of 70 to 80 percent is found between the three locations

    Towards universal quantum computation through relativistic motion

    Get PDF
    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes

    Using collective intelligence to identify barriers to teaching 12–19 year olds about the ocean in Europe

    Get PDF
    Since the degradation of the marine environment is strongly linked to human activities, having citizens who appreciate the ocean's influence on them and their influence on the ocean is important. Research has shown that citizens have a limited understanding of the ocean and it is this lack of ocean literacy that needs to change. This study maps the European landscape of barriers to teaching 12–19 year olds about the ocean, through the application of Collective Intelligence, a facilitation and problem solving methodology. The paper presents a meta-analysis of the 657 barriers to teaching about the ocean, highlighting how these barriers are interconnected and influence one another in a European Influence Map. The influence map shows 8 themes: Awareness and Perceived knowledge; Policies and Strategies; Engagement, formal education sector; the Ocean itself; Collaboration; Connections between humans and the ocean and the Blue Economy, having the greatest influence and impact on marine education. “Awareness and Perceived knowledge” in Stage 1, exerts the highest level of overall influence in teaching 12–19 year olds about the ocean. This map and study serves as a roadmap for policy makers to implement mobilisation actions that could mitigate the barriers to teaching about the ocean. Examples of such actions include free marine education learning resources such as e-books, virtual laboratories or hands-on experiments. Thus, supporting educators in taking on the challenge of helping our youth realise that the ocean supports life on Earth is essential for education, the marine and human well-being

    Landauer vs. Nernst: What is the True Cost of Cooling a Quantum System?

    Full text link
    Thermodynamics connects our knowledge of the world to our capability to manipulate and thus to control it. This crucial role of control is exemplified by the third law of thermodynamics, Nernst's unattainability principle, stating that infinite resources are required to cool a system to absolute zero temperature. But what are these resources and how should they be utilised? And how does this relate to Landauer's principle that famously connects information and thermodynamics? We answer these questions by providing a framework for identifying the resources that enable the creation of pure quantum states. We show that perfect cooling is possible with Landauer energy cost given infinite time or control complexity. However, such optimal protocols require complex unitaries generated by an external work source. Restricting to unitaries that can be run solely via a heat engine, we derive a novel Carnot-Landauer limit, along with protocols for its saturation. This generalises Landauer's principle to a fully thermodynamic setting, leading to a unification with the third law and emphasising the importance of control in quantum thermodynamics.Comment: 15 pages, 4 figures, 46 pages of appendice

    Experimental quantum speed-up in reinforcement learning agents

    Get PDF
    Increasing demand for algorithms that can learn quickly and efficiently has led to a surge of development within the field of artificial intelligence (AI). An important paradigm within AI is reinforcement learning (RL), where agents interact with environments by exchanging signals via a communication channel. Agents can learn by updating their behaviour based on obtained feedback. The crucial question for practical applications is how fast agents can learn to respond correctly. An essential figure of merit is therefore the learning time. While various works have made use of quantum mechanics to speed up the agent's decision-making process, a reduction in learning time has not been demonstrated yet. Here we present a RL experiment where the learning of an agent is boosted by utilizing a quantum communication channel with the environment. We further show that the combination with classical communication enables the evaluation of such an improvement, and additionally allows for optimal control of the learning progress. This novel scenario is therefore demonstrated by considering hybrid agents, that alternate between rounds of quantum and classical communication. We implement this learning protocol on a compact and fully tunable integrated nanophotonic processor. The device interfaces with telecom-wavelength photons and features a fast active feedback mechanism, allowing us to demonstrate the agent's systematic quantum advantage in a setup that could be readily integrated within future large-scale quantum communication networks.Comment: 10 pages, 4 figure
    • 

    corecore