3,413 research outputs found

    The CP-violating asymmetry in \eta\to\pi^+ \pi^- e^+e^-

    Full text link
    We study the CP-violating asymmetry {\cal A}_{\rm CP}, which arises, in \eta\to\pi^+\pi^- e^+e^-, from the angular correlation of the e^+ e^- and \pi^+\pi^- planes due to the interference between the magnetic and electric decay amplitudes. With the phenomenologically determined magnetic amplitude and branching ratio as input, the asymmetry, induced by the electric bremsstrahlung amplitude through the CP-violating decay \eta\to\pi^+\pi^-, and by an unconventional tensor type operator, has been estimated respectively. The upper bound of {\cal A}_{\rm CP} from the former is about 10^{-3}, and the asymmetry from the latter might be up to O(10^{-2}). One can therefore expect that this CP asymmetry would be an interesting CP-violating observable for the future precise measurements in the \eta factories.Comment: LaTeX, 6 pages. One reference corrected, and some new references adde

    NASA Centers and Universities Collaborate in Annual Smallsat Technology Partnerships

    Get PDF
    The Small Spacecraft Technology program within the NASA Space Technology Mission Directorate sponsors the Smallsat Technology Partnerships (STP) initiative. The STP initiative awards cooperative agreements between NASA centers and university teams for technology development efforts that advance the capabilities of small spacecraft to achieve NASA mission objectives in unique and more affordable ways. NASA’s announcement to return humans to the Moon by 2024 raises new opportunities for Smallsats to contribute to missions in cislunar space, though technical challenges are to be overcome to establish their value in this environment. Precursor missions utilizing small spacecraft will blaze the trail for lunar exploration, establishing infrastructure such as communication and navigation networks, and performing assembly and repair services for larger structures and human habitats. To achieve these goals, certain novel Smallsat technologies will need to be developed and demonstrated. The 2020 STP solicitation sought proposals for specific technologies to enable these lunar missions. For the 2020 STP cycle, NASA selected nine university teams to mature new systems and capabilities in the laboratory, and in some cases, demonstrate in suborbital or orbital spaceflights. This paper describes the STP portfolio, past and present efforts, and the nine partnerships selected

    Metal stopping reagents facilitate discontinuous activity assays of the de novo purine biosynthesis enzyme PurE

    Get PDF
    The conversion of 5-aminoimidazole ribonucleotide (AIR) to 4-carboxy-AIR (CAIR) represents an unusual divergence in purine biosynthesis: microbes and nonmetazoan eukaryotes use class I PurEs while animals use class II PurEs. Class I PurEs are therefore a potential antimicrobial target; however, no enzyme activity assay is suitable for high throughput screening (HTS). Here we report a simple chemical quench that fixes the PurE substrate/product ratio for 24 h, as assessed by the Bratton-Marshall assay (BMA) for diazotizable amines. The ZnSO4 stopping reagent is proposed to chelate CAIR, enabling delayed analysis of this acid-labile product by BMA or other HTS method

    Siderite Dissolution in Mars-analog Brines: Kinetics and Reaction Products

    Get PDF
    This study examines siderite (FeCO3) reactivity in MgCl2 and MgSO4 brines with varying salt concentrations (0.01M, 1M, and 3M) at both acidic (pH ∼ 2 and pH ≤ 2) and near-neutral (pH ∼ 7) conditions. We measured aqueous Fe concentrations through time to determine dissolution rates and characterized the solid reaction products with scanning electron microscopy, electron dispersive X-ray spectroscopy, and Raman spectroscopy. Iron-based siderite dissolution rates at pH 2 were equivalent in the 0.01M and 1M MgSO4 brines and slower in 3M MgSO4; rates in the MgCl2 brines slow systematically with increasing brine concentration for equivalent initial pH values. Fe-based dissolution rates could not be determined in the neutral pH experiments due to precipitation of iron (hydr)oxide phases. After 1 day in acidic brines, abundant etch pits were observed; however, in the neutral experiments, siderite was identified with Raman spectroscopy even after 1 yr of dissolution along with a range of iron (hydr)oxide phases. Scanning electron microscopy imaging of the neutral experiment products found Mg-sulfate brines produced a chaotic surface texture. Therefore, micron-scale textural observations could be used to discriminate between alteration in chloride and sulfate brines. Initial iron release rates were similar in dilute brines, but decreased by less than an order of magnitude in the two highest-concentration pH 2 brine experiments; therefore, siderite-bearing assemblages exposed to acidic fluids, regardless of salinity, would likely dissolve completely over geologically short periods of time, thus erasing siderite and likely other carbonate minerals from the geologic record.Funding was provided by NASA grant #NNX13AG75G and the School of Geosciences at the University of Oklahoma.Ye

    Stress detection using wearable physiological sensors

    Get PDF
    As the population increases in the world, the ratio of health carers is rapidly decreasing. Therefore, there is an urgent need to create new technologies to monitor the physical and mental health of people during their daily life. In particular, negative mental states like depression and anxiety are big problems in modern societies, usually due to stressful situations during everyday activities including work. This paper presents a machine learning approach for stress detection on people using wearable physiological sensors with the �final aim of improving their quality of life. The presented technique can monitor the state of the subject continuously and classify it into "stressful" or "non-stressful" situations. Our classification results show that this method is a good starting point towards real-time stress detection

    K^+ -> pi^+pi^0e^+e^-: a novel short-distance probe

    Full text link
    We study the decay K^+ -> pi^+ pi^0 e^+ e^-, currently under analysis by the NA62 Collaboration at CERN. In particular, we provide a detailed analysis of the Dalitz plot for the long-distance, gamma^*-mediated, contributions (Bremsstrahlung, direct emission and its interference). We also examine a set of asymmetries to isolate genuine short-distance effects. While we show that charge asymmetries are not required to test short distances, they provide the best environment for its detection. This constitutes by itself a strong motivation for NA62 to study K^- decays in the future. We therefore provide a detailed study of different charge asymmetries and the corresponding estimated signals. Whenever possible, we make contact with the related processes K^+ -> pi^+ pi^0 gamma and K_L -> pi^+ pi^- e^+ e^- and discuss the advantages of K^+ -> pi^+ pi^0 e^+ e^- over them.Comment: 25 pages, 6 figure

    A Single Dose of the DENV-1 Candidate Vaccine rDEN1Δ30 Is Strongly Immunogenic and Induces Resistance to a Second Dose in a Randomized Trial

    Get PDF
    Dengue is an emerging infectious disease that has become the most important arboviral infection worldwide. There are four serotypes of dengue virus, DENV-1, DENV-2, DENV-3, and DENV-4, each capable of causing the full spectrum of disease. rDEN1Δ30 is a live attenuated investigational vaccine for the prevention of DENV-1 illness and is also a component of an investigational tetravalent DENV vaccine currently in Phase I evaluation. A single subcutaneous dose of rDEN1Δ30 was previously shown to be safe and immunogenic in healthy adults. In the current randomized placebo-controlled trial, 60 healthy flavivirus-naive adults were randomized to receive 2 doses of rDEN1Δ30 (N = 50) or placebo (N = 10), either on study days 0 and 120 (cohort 1) or 0 and 180 (cohort 2). We sought to evaluate the safety and immunogenicity of this candidate vaccine in 50 additional vaccinees and to test whether the humoral immune response could be boosted by a second dose administered 4 or 6 months after the first dose. The first dose of vaccine was well tolerated, infected 47/50 vaccinees and induced seroconversion in 46/50 vaccinees. Irrespective of dosing interval, the second dose of vaccine was also well tolerated but did not induce any detectable viremia or ≥4-fold rise in serum neutralizing antibody titer.Only five subjects had an anamnestic antibody response detectable by ELISA following a second dose of vaccine, demonstrating that the vaccine induced sterilizing humoral immunity in most vaccinees for at least six months following primary vaccination.The promising safety and immunogenicity profile of this vaccine confirms its suitability for inclusion in a tetravalent dengue vaccine
    • …
    corecore