188 research outputs found

    Scaling Analysis of Magnetic Filed Tuned Phase Transitions in One-Dimensional Josephson Junction Arrays

    Full text link
    We have studied experimentally the magnetic field-induced superconductor-insulator quantum phase transition in one-dimensional arrays of small Josephson junctions. The zero bias resistance was found to display a drastic change upon application of a small magnetic field; this result was analyzed in context of the superfluid-insulator transition in one dimension. A scaling analysis suggests a power law dependence of the correlation length instead of an exponential one. The dynamical exponents zz were determined to be close to 1, and the correlation length critical exponents were also found to be about 0.3 and 0.6 in the two groups of measured samples.Comment: 4 pages, 4 figure

    An optimization approach to adaptive multi-dimensional capital management

    Get PDF
    Firms should keep capital to offer sufficient protection against the risks they are facing. In the insurance context methods have been developed to determine the minimum capital level required, but less so in the context of firms with multiple business lines including allocation. The individual capital reserve of each line can be represented by means of classical models, such as the conventional Cram\'{e}r-Lundberg model, but the challenge lies in soundly modelling the correlations between the business lines. We propose a simple yet versatile approach that allows for dependence by introducing a common environmental factor. We present a novel Bayesian approach to calibrate the latent environmental state distribution based on observations concerning the claim processes. The calibration approach is adjusted for an environmental factor that changes over time. The convergence of the calibration procedure towards the true environmental state is deduced. We then point out how to determine the optimal initial capital of the different business lines under specific constraints on the ruin probability of subsets of business lines. Upon combining the above findings, we have developed an easy-to-implement approach to capital risk management in a multi-dimensional insurance risk model

    It’s not just the Therapist: Therapist and Country-Wide Experience Predict Therapist Adherence and Adolescent Outcome

    Get PDF
    Contains fulltext : 173905.pdf (publisher's version ) (Open Access)Objective: Therapist adherence is a quality indicator in routine clinical care when evaluating the success of the implementation of an intervention. The current study investigated whether therapist adherence mediates the association between therapist, team, and country-wide experience (i.e. number of years since implementation in the country) on the one hand, and treatment outcome on the other hand. We replicated and extended a study by Löfholm et al. (2014). Method: Data over a 10-year period were obtained from 4290 adolescents (12-17 years) with antisocial or delinquent problem behavior, who were treated with Multisystemic Therapy (MST) by 222 therapists, working in 27 different teams in the Netherlands. Multilevel structural equation modeling was used to assess the associations between experience, therapist adherence, and post-treatment outcomes. Results: Treatment outcomes were directly predicted by therapist experience, countrywide experience, and therapist adherence, but not by team experience. Moreover, therapist adherence mediated the association between therapist and country-wide experience, and treatment outcomes. The association between therapist experience and therapist adherence was not affected by the number of years of team experience or country-wide experience. Conclusion: The effect of country-wide experience on outcome may reflect increasing experience of training and supporting the therapists. It suggests that nation-wide quality control may relate to better therapist adherence and treatment outcome for adolescents treated with systemic therapy.17 p

    Electron Glass in Ultrathin Granular Al Films at Low Temperatures

    Full text link
    Quench-condensed granular Al films, with normal-state sheet resistance close to 10 kΩ/\Omega/\Box, display strong hysteresis and ultraslow, non-exponential relaxation in the resistance when temperature is varied below 300 mK. The hysteresis is nonlinear and can be suppressed by a dc bias voltage. The relaxation time does not obey the Arrhenius form, indicating the existence of a broad distribution of low energy barriers. Furthermore, large resistance fluctuations, having a 1/f-type power spectrum with a low-frequency cut-off, are observed at low temperatures. With decreasing temperature, the amplitude of the fluctuation increases and the cut-off frequency decreases. These observations combine to provide a coherent picture that there exists a new glassy electron state in ultrathin granular Al films, with a growing correlation length at low temperatures.Comment: RevTeX 3.1, 4 pages, 4 figures (EPS files) (Minor Additions

    Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states

    Full text link
    The results of experimental and theoretical studies of zero-bias anomaly (ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are presented. A specific feature of the structures is a coexistence of the 2D and 3D states at the Fermi energy near the semiconductor surface. The dependence of the measured ZBA amplitude on the strength and orientation of the applied magnetic field is in agreement with the proposed theoretical model. According to this model, electrons tunnel into 2D states, and move diffusively in the 2D layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf, published versio

    Observation of the Dynamical Casimir Effect in a Superconducting Circuit

    Full text link
    One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. While initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences, for instance producing the Lamb shift of atomic spectra and modifying the magnetic moment for the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed if it might instead be possible to more directly observe the virtual particles that compose the quantum vacuum. 40 years ago, Moore suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. This effect was later named the dynamical Casimir effect (DCE). Using a superconducting circuit, we have observed the DCE for the first time. The circuit consists of a coplanar transmission line with an electrical length that can be changed at a few percent of the speed of light. The length is changed by modulating the inductance of a superconducting quantum interference device (SQUID) at high frequencies (~11 GHz). In addition to observing the creation of real photons, we observe two-mode squeezing of the emitted radiation, which is a signature of the quantum character of the generation process.Comment: 12 pages, 3 figure

    Toward tailored care for families with multiple problems:A quasi-experimental study on effective elements of care

    Get PDF
    Several effective interventions have been developed for families with multiple problems (FMP), but knowledge is lacking as to which specific practice and program elements of these interventions deliver positive outcomes. The aim of this study is to assess the degree to which practice and program elements (contents of and structure in which care is provided) contribute to the effectiveness of interventions for FMP in general and for subgroups with child and/or parental psychiatric problems, intellectual disabilities, or substance use. We performed a quasi-experimental study on the effectiveness of practice and program elements provided in attested FMP interventions. Using self-report questionnaires, we measured primary (child's internalizing and externalizing problems) and secondary (parental stress and social contacts) outcomes at the beginning, end, and three months thereafter. By means of Latent Profile Analysis, we identified groups of families receiving similar combinations of practice elements ("profiles"), and we calculated propensity scores. Next, we assessed how practice element profiles and program elements affected improvement in outcomes, and whether these effects were moderated by subgroup characteristics. We found three practice element profiles (explorative/supportive, action-oriented, and their combination), which were equally effective. Regarding program elements, effects were enhanced by more frequent telephone contact between visits and more frequent intervision. Effectiveness of practice and program elements varied for specific FMP subgroups. Variations in the content of care for FMP do not affect its effectiveness, but variations in the structure of the care do. This finding can help to further improve effective interventions

    Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions

    Full text link
    We study a 1-D array of Josephson coupled superconducting grains with kinetic inductance which dominates over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon model. We find that their classical relativistic motion leads to saturation branches in the I-V characteristic of the array. We then discuss the semi-classical quantization of the charge soliton, and show that it is consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of 100 microns, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the quantum behaviour of the charge soliton.Comment: 26 pages, LaTex, 7 Postscript figure
    corecore