8,511 research outputs found

    Dozens of compact and high velocity-dispersion early-type galaxies in Sloan Digital Sky Survey

    Full text link
    Aims. We aim at finding candidates of potential survivors of high-redshift compact galaxies in SDSS, as targets for more detailed follow-up observations. Methods. From the virial theorem it is expected that for a given mass, compact galaxies have stellar velocity dispersion higher than the mean due to their smaller sizes. Therefore velocity dispersion coupled with size (or mass) is an appropriate method to select relics, independent of the stellar population properties. Based on these consideration we design a set of criteria using distribution of early-type galaxies from SDSS on the log10_{10}(R0_{0})-log10_{10}(σ0\sigma_{0}) plane to find the most extreme objects on it. Results. We find 76 galaxies at 0.05 < z < 0.2, which have properties similar to the typical quiescent galaxies at high redshift. We study how well these galaxies fit on well-known local universe relations of early-type galaxies such as the fundamental plane, the red sequence or mass-size relations. As expected from the selection criteria, the candidates are located in an extreme corner of mass-size plane. However, they do not extend as deeply into the so-called zone of exclusion as some of the high-redshift compact galaxies ('red nuggets') found at high redshift, being a factor 2-3 less massive at a given intrinsic scale size. Our candidates are systematically offset from scaling relations of average early-type galaxies, while being in the mass-size range expected for passive evolution of the red nuggets from their high redshift to the present. Conclusions. The 76 selected candidates form a well suited set of objects for further follow-up observations. We argue that selecting a high velocity dispersion is the best way to find analogues of compact high redshift galaxies in the local universe.Comment: 37 pages, 24 figures, accepted for publication in A&

    The dynamical distance and intrinsic structure of the globular cluster omega Centauri

    Get PDF
    We determine the dynamical distance D, inclination i, mass-to-light ratio M/L and the intrinsic orbital structure of the globular cluster omega Cen, by fitting axisymmetric dynamical models to the ground-based proper motions of van Leeuwen et al. and line-of-sight velocities from four independent data-sets. We correct the observed velocities for perspective rotation caused by the space motion of the cluster, and show that the residual solid-body rotation component in the proper motions can be taken out without any modelling other than assuming axisymmetry. This also provides a tight constraint on D tan i. Application of our axisymmetric implementation of Schwarzschild's orbit superposition method to omega Cen reveals no dynamical evidence for a significant radial dependence of M/L. The best-fit dynamical model has a stellar V-band mass-to-light ratio M/L_V = 2.5 +/- 0.1 M_sun/L_sun and an inclination i = 50 +/- 4 degrees, which corresponds to an average intrinsic axial ratio of 0.78 +/- 0.03. The best-fit dynamical distance D = 4.8 +/- 0.3 kpc (distance modulus 13.75 +/- 0.13 mag) is significantly larger than obtained by means of simple spherical or constant-anisotropy axisymmetric dynamical models, and is consistent with the canonical value 5.0 +/- 0.2 kpc obtained by photometric methods. The total mass of the cluster is (2.5 +/- 0.3) x 10^6 M_sun. The best-fit model is close to isotropic inside a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the outer region, which displays significant mean rotation. This phase-space structure may well be caused by the effects of the tidal field of the Milky Way. The cluster contains a separate disk-like component in the radial range between 1 and 3 arcmin, contributing about 4% to the total mass.Comment: 37 pages (23 figures), accepted for publication in A&A, abstract abridged, for PS and PDF file with full resolution figures, see http://www.strw.leidenuniv.nl/~vdven/oc

    A Stellar Dynamical Mass Measurement of the Black Hole in NGC 3998 from Keck Adaptive Optics Observations

    Get PDF
    We present a new stellar dynamical mass measurement of the black hole in the nearby, S0 galaxy NGC 3998. By combining laser guide star adaptive optics observations obtained with the OH-Suppressing Infrared Imaging Spectrograph on the Keck II telescope with long-slit spectroscopy from the Hubble Space Telescope and the Keck I telescope, we map out the stellar kinematics on both small spatial scales, well within the black hole sphere of influence, and on large scales. We find that the galaxy is rapidly rotating and exhibits a sharp central peak in the velocity dispersion. Using the kinematics and the stellar luminosity density derived from imaging observations, we construct three-integral, orbit-based, triaxial stellar dynamical models. We find the black hole has a mass of M_BH = (8.1_{-1.9}^{+2.0}) x 10^8 M_sun, with an I-band stellar mass-to-light ratio of M/L = 5.0_{-0.4}^{+0.3} M_sun/L_sun (3-sigma uncertainties), and that the intrinsic shape of the galaxy is very round, but oblate. With the work presented here, NGC 3998 is now one of a very small number of galaxies for which both stellar and gas dynamical modeling have been used to measure the mass of the black hole. The stellar dynamical mass is nearly a factor of four larger than the previous gas dynamical black hole mass measurement. Given that this cross-check has so far only been attempted on a few galaxies with mixed results, carrying out similar studies in other objects is essential for quantifying the magnitude and distribution of the cosmic scatter in the black hole mass - host galaxy relations.Comment: 19 pages, 15 figures, accepted for publication in Ap

    Towards Precision Supermassive Black Hole Masses using Megamaser Disks

    Full text link
    Megamaser disks provide the most precise and accurate extragalactic supermassive black hole masses. Here we describe a search for megamasers in nearby galaxies using the Green Bank Telescope (GBT). We focus on galaxies where we believe that we can resolve the gravitational sphere of influence of the black hole and derive a stellar or gas dynamical measurement with optical or NIR observations. Since there are only a handful of super massive black holes (SMBH) that have direct black hole mass measurements from more than one method, even a single galaxy with a megamaser disk and a stellar dynamical black hole mass would provide necessary checks on the stellar dynamical methods. We targeted 87 objects from the Hobby-Eberly Telescope Massive Galaxy Survey, and detected no new maser disks. Most of the targeted objects are elliptical galaxies with typical stellar velocity dispersions of 250 km/s and distances within 130 Mpc. We discuss the implications of our non-detections, whether they imply a threshold X-ray luminosity required for masing, or possibly reflect the difficulty of maintaining a masing disk around much more massive (>10^8 Msun) black holes at low Eddington ratio. Given the power of maser disks at probing black hole accretion and demographics, we suggest that future maser searches should endeavour to remove remaining sample biases, in order to sort out the importance of these covariant effects.Comment: 9 pages, 5 figures, Apj, updated to match the accepted versio

    Dyslexia and Comorbid Dyscalculia: rate of comorbidity and underlying cognitive and learning profile

    Get PDF
    PURPOSE OF THE STUDY. Children diagnosed with a specific learning disorder (SLD) have four to five times higher chances of developing a comorbid condition. In particular, the high prevalence of comorbid dyscalculia (MD) in children with dyslexia (RD) has been documented. Nevertheless, the exact rate of MD comorbidity and the causes underlying the overlap remain unclear since most research has focused on studying them in isolation. Given the relevance of early identification and evidence-based interventions for further compensation of SLD, there is a need for studies on this matter. The study intended to fill this gap. METHOD. The study was a secondary data analysis of the standardised test scores of 215 neuropsychological assessments administered to grade 1 to 3 schoolchildren in Argentina who had a prior diagnosis of RD. For the purposes of the study, they were classified into 2 groups (RD only and comorbid RDMD). Scores were analyzed using SPSS Statistics to (i) explore the rate of MD comorbidity in children with RD; (ii) contrast the cognitive and learning profiles of the RD and the RDMD group; and (iii) assess the predictive value of each cognitive factor to the development of the RDMD comorbidity. RESULTS AND CONCLUSION. The study found that children with RD developed RDMD at a frequency of 33.5%. There was a significant difference in the two groups' learning and cognitive factors scores, with the comorbid group worst affected in all domains. Among these, verbal working memory, spatial skills, semantic long-term memory and phonological awareness were the most sensitive predictors; together they could account for 35% of the MD comorbidity. These findings are evidence of the high incidence of MD comorbidity in the population with RD and highlight the predictive value of specific cognitive markers

    Schwarzschild models of the Sculptor dSph galaxy

    Get PDF
    We have developed a spherically symmetric dynamical model of a dwarf spheroidal galaxy using the Schwarzschild method. This type of modelling yields constraints both on the total mass distribution (e.g. enclosed mass and scale radius) as well as on the orbital structure of the system modelled (e.g. velocity anisotropy). Therefore not only can we derive the dark matter content of these systems, but also explore possible formation scenarios. Here we present preliminary results for the Sculptor dSph. We find that the mass of Sculptor within 1kpc is 8.5\times10^(7\pm0.05) M\odot, its anisotropy profile is tangentially biased and slightly more isotropic near the center. For an NFW profile, the preferred concentration (~15) is compatible with cosmological models. Very cuspy density profiles (steeper than NFW) are strongly disfavoured for Sculptor.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    Valor de la resonancia magnética en el diagnóstico de las lesiones de rodilla

    Get PDF
    Para determinar la eficacia diagnóstica de la resonancia magnética en las lesiones de la rodilla se han estudiado 60 pacientes tomando como referencia los hallazgos obtenidos en la artroscopia. Se han estudiado la sensibilidad, especificidad, valor predictivo positivo, valor predictivo negativo y valor predictivo global respecto a ambos meniscos, ligamentos cruzados y lesiones cartilaginosas. Para los meniscos la sensibilidad ha sido del 95%, la especificidad del 85% y el valor predictivo global del 89%; para el LCA la sensibilidad ha sido del 75%, la especificidad del 94% y el valor predictivo del 90%, y para las lesiones del cartílago la sensibilidad ha sido del 54%, la especificidad del 100% y el valor predictivo del 82%.In order to evaluate the efficacy of magnetic resonance imaging (MRI) in the diagnosis of knee patology, the MRI charts of 60 patients were reviewed, considering as a reference the findings of the arthroscopy. Sensitivity, specificity, predictive positive value, predictive negative value and predictive global value of the technique were determined. The results showed a sensitivity of 95%, a specificity of 85% and a predictive global value of 89% for the meniscus. A sensitivity of 75%, a specificity of 94% and a predictive global value of 90% for the anterior cruciate ligament. The articular cartilage abnormalities had a sensitivity of 54% a specificity of 100% and a predictive global value of 82%
    corecore