101,367 research outputs found
Quantum fluctuations and life
There have been many claims that quantum mechanics plays a key role in the
origin and/or operation of biological organisms, beyond merely providing the
basis for the shapes and sizes of biological molecules and their chemical
affinities. These range from the suggestion by Schrodinger that quantum
fluctuations produce mutations, to the conjecture by Hameroff and Penrose that
quantum coherence in microtubules is linked to consciousness. I review some of
these claims in this paper, and discuss the serious problem of decoherence. I
advance some further conjectures about quantum information processing in
bio-systems. Some possible experiments are suggested.Comment: 10 pages, no figures, conference pape
Quantum mechanics and the equivalence principle
A quantum particle moving in a gravitational field may penetrate the
classically forbidden region of the gravitational potential. This raises the
question of whether the time of flight of a quantum particle in a gravitational
field might deviate systematically from that of a classical particle due to
tunnelling delay, representing a violation of the weak equivalence principle. I
investigate this using a model quantum clock to measure the time of flight of a
quantum particle in a uniform gravitational field, and show that a violation of
the equivalence principle does not occur when the measurement is made far from
the turning point of the classical trajectory. I conclude with some remarks
about the strong equivalence principle in quantum mechanics.Comment: 10 pages, 1 figure, research pape
How bio-friendly is the universe
The oft-repeated claim that life is written into the laws of nature are
examined and criticized. Arguments are given in favour of life spreading
between near-neighbour planets in rocky impact ejecta (transpermia), but
against panspermia, leading to the conclusion that if life is indeed found to
be widespread in the universe, some form of life principle or biological
determinism must be at work in the process of biogenesis. Criteria for what
would constitute a credible life principle are elucidated. I argue that the key
property of life is its information content, and speculate that the emergence
of the requisite information-processing machinery might require quantum
information theory for a satisfactory explanation. Some clues about how
decoherence might be evaded are discussed. The implications of some of these
ideas for fine tuning are discussed.Comment: 11 page conference report, no figure
A simplified self-adaptive grid method, SAGE
The formulation of the Self-Adaptive Grid Evolution (SAGE) code, based on the work of Nakahashi and Deiwert, is described in the first section of this document. The second section is presented in the form of a user guide which explains the input and execution of the code, and provides many examples. Application of the SAGE code, by Ames Research Center and by others, in the solution of various flow problems has been an indication of the code's general utility and success. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for single, zonal, and multiple grids. Modifications to the methodology and the simplified input options make this current version a flexible and user-friendly code
New methods for B meson decay constants and form factors from lattice NRQCD
We determine the normalisation of scalar and pseudoscalar current operators
made from non-relativistic quarks and Highly Improved Staggered light
quarks in lattice Quantum Chromodynamics (QCD) through
and . We use matrix elements of these operators to
extract meson decay constants and form factors, then compare to those
obtained using the standard vector and axial-vector operators. This provides a
test of systematic errors in the lattice QCD determination of the meson
decay constants and form factors. We provide a new value for the and
meson decay constants from lattice QCD calculations on ensembles that include
, , and quarks in the sea and those which have the quark
mass going down to its physical value. Our results are GeV,
GeV and , agreeing well with earlier
results using the temporal axial current. By combining with these previous
results, we provide updated values of GeV,
GeV and .Comment: 14 pages, 10 figure
Tadpole renormalization and relativistic corrections in lattice NRQCD
We make a comparison of two tadpole renormalization schemes in the context of
the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and
NRQCD actions are analyzed using the mean-link in Landau gauge, and
using the fourth root of the average plaquette . Simulations are done
for , , and systems. The hyperfine splittings are
computed both at leading and at next-to-leading order in the relativistic
expansion. Results are obtained at lattice spacings in the range of about
0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole
renormalization using . This includes much better scaling behavior of
the hyperfine splittings in the three quarkonium systems when is
used. We also find that relativistic corrections to the spin splittings are
smaller when is used, particularly for the and
systems. We also see signs of a breakdown in the NRQCD expansion when the bare
quark mass falls below about one in lattice units. Simulations with
also appear to be better behaved in this context: the bare quark masses turn
out to be larger when is used, compared to when is used on
lattices with comparable spacings. These results also demonstrate the need to
go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and
references
QuestionBuddy – A collaborative question search and play portal.
Generally itembanks are inaccessible to students. Current use of itembanks focus on the teacher as having responsibility to organise questions (place them in pools, associate them with course content) and make them available/deliver them to students. This limits students to the teachers perspective and to the questions that the teacher has made available. As the practice of itembanking increases it may be appropriate to encourage students to use questions from pools not directly prepared by their teacher. A mechanism for searching across itembanks and sharing recommendations with peers would be of help in facilitating this. We describe QuestionBuddy, a collaborative filter based question portal for students, built to study student usage of, and attitudes to, such a system
Space photography and the exploration of Mars
A general exposition of the scientific potentialities and analytic framework of space photography is presented using the photography of Mars from flybys and orbiters as the principal example. Space photography is treated here as a communication process in which planetary scene information is communicated to the eye-brain receiver of earth-based interpreters. The salient parameters of this process are: (1) total information returned, (2) surface resolution, and (3) a priori knowledge regarding the planetary surface observed
- …
