7,541 research outputs found

    Are the Kepler Near-Resonance Planet Pairs due to Tidal Dissipation?

    Get PDF
    The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely-held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.Comment: 20 pages, including 7 figures; accepted for publication in Ap

    Interplay between antiferromagnetic order and spin polarization in ferromagnetic metal/electron-doped cuprate superconductor junctions

    Full text link
    Recently we proposed a theory of point-contact spectroscopy and argued that the splitting of zero-bias conductance peak (ZBCP) in electron-doped cuprate superconductor point-contact spectroscopy is due to the coexistence of antiferromagnetic (AF) and d-wave superconducting orders [Phys. Rev. B {\bf 76}, 220504(R) (2007)]. Here we extend the theory to study the tunneling in the ferromagnetic metal/electron-doped cuprate superconductor (FM/EDSC) junctions. In addition to the AF order, the effects of spin polarization, Fermi-wave vector mismatch (FWM) between the FM and EDSC regions, and effective barrier are investigated. It is shown that there exits midgap surface state (MSS) contribution to the conductance to which Andreev reflections are largely modified due to the interplay between the exchange field of ferromagnetic metal and the AF order in EDSC. Low-energy anomalous conductance enhancement can occur which could further test the existence of AF order in EDSC. Finally, we propose a more accurate formula in determining the spin polarization value in combination with the point-contact conductance data.Comment: 9 pages, 8 figure

    Magneto-Optical Stern-Gerlach Effect in Atomic Ensemble

    Full text link
    We study the birefringence of the quantized polarized light in a magneto-optically manipulated atomic ensemble as a generalized Stern-Gerlach Effect of light. To explain this engineered birefringence microscopically, we derive an effective Shr\"odinger equation for the spatial motion of two orthogonally polarized components, which behave as a spin with an effective magnetic moment leading to a Stern-Gerlach split in an nonuniform magnetic field. We show that electromagnetic induced transparency (EIT) mechanism can enhance the magneto-optical Stern-Gerlach effect of light in the presence of a control field with a transverse spatial profile and a inhomogeneous magnetic field.Comment: 7 pages, 5 figure

    Incorporating Inertia Into Multi-Agent Systems

    Get PDF
    We consider a model that demonstrates the crucial role of inertia and stickiness in multi-agent systems, based on the Minority Game (MG). The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity towards changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.Comment: extensively revised, 8 pages, 10 figures in revtex

    A method to find quantum noiseless subsystems

    Full text link
    We develop a structure theory for decoherence-free subspaces and noiseless subsystems that applies to arbitrary (not necessarily unital) quantum operations. The theory can be alternatively phrased in terms of the superoperator perspective, or the algebraic noise commutant formalism. As an application, we propose a method for finding all such subspaces and subsystems for arbitrary quantum operations. We suggest that this work brings the fundamental passive technique for error correction in quantum computing an important step closer to practical realization.Comment: 5 pages, to appear in Physical Review Letter
    • …
    corecore