329 research outputs found

    A Tutorial on Machine Learning for Failure Management in Optical Networks

    Get PDF
    Failure management plays a role of capital importance in optical networks to avoid service disruptions and to satisfy customers' service level agreements. Machine learning (ML) promises to revolutionize the (mostly manual and human-driven) approaches in which failure management in optical networks has been traditionally managed, by introducing automated methods for failure prediction, detection, localization, and identification. This tutorial provides a gentle introduction to some ML techniques that have been recently applied in the field of the optical-network failure management. It then introduces a taxonomy to classify failure-management tasks and discusses possible applications of ML for these failure management tasks. Finally, for a reader interested in more implementative details, we provide a step-by-step description of how to solve a representative example of a practical failure-management task

    Challenges and Requirements for Introducing Impairment-awareness into the Management and Control Planes of ASON/GMPLS WDM Networks

    Get PDF
    The absence of electrical regenerators in transparent WDM networks significantly contributes to reduce the overall network cost. In transparent WDM networks, a proper resource allocation requires that the presence of physical impairments in Routing and Wavelength Assignment (RWA) and lightpath provisioning be taken into account. In this article a centralized, a hybrid centralized-distributed and two distributed approaches that integrate information about most relevant physical impairments in RWA and lightpath provisioning are presented and assessed. Both centralized and hybrid approaches perform a centralized path computation at the management-plane level, utilizing physical impairment information, while the lightpath provisioning is done by the management plane or the control plane, respectively. The distributed approaches fall entirely within the scope of the ASON/GMPLS control plane. For these two approaches, we provide functional requirements, architectural functional blocks, and protocol extensions for implementing either an impairment-aware real-time RWA, or a lighpath provisioning based on impairment-aware signaling

    preliminary investigation on a rotary magnetocaloric refrigerator prototype

    Get PDF
    Abstract Environmental legislations are currently imposing important restrictions to regulate the use of refrigerant fluids in order to reduce the greenhouse gases emissions and global warming potential. To overcome these issues, a valid alternative to replace conventional refrigeration systems can be represented by magnetic refrigeration. Since magnetic refrigeration is based on the magnetocaloric effect it represents an environmental friendly technology that avoids the use of Chlorinated refrigerants. In this paper a preliminary analysis of a novel magnetocaloric refrigerator is presented. The magnetocaloric refrigeration prototype uses Gadolinium as refrigerant and water as heat exchange medium, and relies on permanent magnets as magnetic field source. The device operates according to the active regenerative principle with a rotary movement. A detailed description of the main components included in the design of the prototype device is presented along with a schematic representation of the hydraulic circuit. Focusing on the regenerators beds, some simulations have been carried out to quantify the heat energy fluxes between water and gadolinium. The results of the simulations show a decrease on gadolinium temperature distribution cycle by cycle highlighting the actual effect of the regeneration

    MCAM/MUC18/CD146 as a multifaceted warning marker of melanoma progression in liquid biopsy

    Get PDF
    Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning " marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisatio

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation

    OpenFlow-Control of an OAM-Based Two-Layer Switch Supporting 100Gb/s Real Data-Traffic

    Get PDF
    A two-layer orbital angular momentum and wavelength based switch is presented and characterized up to 100Gb/s with coherent polarization-multiplexed real data traffic. The switch is successfully reconfigured by applying an OpenFlow based SDN control plane
    • …
    corecore