8 research outputs found

    Ratchet-like dynamics of fluxons in annular Josephson junctions driven by bi-harmonic microwave fields

    Full text link
    Experimental observation of the unidirectional motion of a topological soliton driven by a bi-harmonic ac force of zero mean is reported. The observation is made by measuring the current-voltage characteristics for a fluxon trapped in an annular Josephson junction that was placed into a microwave field. The measured dependence of the fluxon mean velocity (rectified voltage) at zero dc bias versus the phase shift between the first and second harmonic of the driving force is in qualitative agreement with theoretical expectations.Comment: 6 figure

    High resolution measurements of the switching current in a Josephson tunnel junction: Thermal activation and macroscopic quantum tunneling

    Full text link
    We have developed a scheme for a high resolution measurement of the switching current distribution of a current biased Josephson tunnel junction using a timing technique. The measurement setup is implemented such that the digital control and read-out electronics are optically decoupled from the analog bias electronics attached to the sample. We have successfully used this technique to measure the thermal activation and the macroscopic quantum tunneling of the phase in a small Josephson tunnel junction with a high experimental resolution. This technique may be employed to characterize current-biased Josephson tunnel junctions for applications in quantum information processing.Comment: 10 pages, 8 figures, 1 tabl

    Comparison of fertiliser formulation behaviours based on a laboratory nutrient dissolution method

    No full text
    Poster presentation. Conference theme : Securing Australia's soils - for profitable industries and healthy landscapesBogumila Tomczak, Colin Rivers, Ashleigh Broadbent, Roslyn Baird, Rodrigo C. Silva, Fien Degryse and Mike J. McLaughli

    Actively personalized vaccination trial for newly diagnosed glioblastoma

    No full text
    Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30–50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens—that is, both unmutated antigens and neoepitopes—may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-l-lysine carboxymethylcellulose) and granulocyte–macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.</p

    Actively personalized vaccination trial for newly diagnosed glioblastoma

    No full text
    corecore