106 research outputs found

    Rapid Determination of Diuretics in Human Urine by Gas Chromatography – Mass Spectrometry Following Microwave Assisted Derivatization

    Get PDF
    This work presents a GC–MS–MS–MS method for the direct determination of clenbuterol in human urine. The method 3 comprises a pretreatment procedure and the instrumental analysis of the derivatives performed by GC–MS (ion trap) with 3 electron impact ionization. The GC–MS analysis allows isolation and characterization of specific fragments from the 1 original (MS ) molecular structure, and in particular, those fragments originating from the precursor ion cluster (m/z5335– 2 337) characteristic of clenbuterol. The MS product fragment m/z5300 is in turn used as a further precursor fragment 3 4 giving rise to a MS spectrum specific for clenbuterol. MS fragmentation spectra were also investigated. However, further 3 4 fragmentation of MS product ions does not lead to functional MS spectra nor to any significant increase in the 3 signal-to-noise ratio. The sensitivity limit of the MS technique is lower than 0.2 mg/ l, with a linear range between 0.5 and 5 mg/ l, thus matching the basic requirements for antidoping analysis according to the guidelines of the International Olympic Committee. Due to its overall analytical performance, the method is presently being evaluated as a confirmation protocol to be followed to detect illicit clenbuterol administration to the athletes, and compared with reference GC–MS and GC–MS–MS techniques

    Human Metapneumovirus Inhibits IFN-β Signaling by Downregulating Jak1 and Tyk2 Cellular Levels

    Get PDF
    Human metapneumovirus (hMPV), a leading cause of respiratory tract infections in infants, inhibits type I interferon (IFN) signaling by an unidentified mechanism. In this study, we showed that infection of airway epithelial cells with hMPV decreased cellular level of Janus tyrosine kinase (Jak1) and tyrosine kinase 2 (Tyk2), due to enhanced proteosomal degradation and reduced gene transcription. In addition, hMPV infection also reduced the surface expression of type I IFN receptor (IFNAR). These inhibitory mechanisms are different from the ones employed by respiratory syncytial virus (RSV), which does not affect Jak1, Tyk2 or IFNAR expression, but degrades downstream signal transducer and activator of transcription proteins 2 (STAT2), although both viruses are pneumoviruses belonging to the Paramyxoviridae family. Our study identifies a novel mechanism by which hMPV inhibits STAT1 and 2 activation, ultimately leading to viral evasion of host IFN responses

    Innate Immune Suppression Enables Frequent Transfection with RNA Encoding Reprogramming Proteins

    Get PDF
    BACKGROUND: Generating autologous pluripotent stem cells for therapeutic applications will require the development of efficient DNA-free reprogramming techniques. Transfecting cells with in vitro-transcribed, protein-encoding RNA is a straightforward method of directly expressing high levels of reprogramming proteins without genetic modification. However, long-RNA transfection triggers a potent innate immune response characterized by growth inhibition and the production of inflammatory cytokines. As a result, repeated transfection with protein-encoding RNA causes cell death. METHODOLOGY/PRINCIPAL FINDINGS: RNA viruses have evolved methods of disrupting innate immune signaling by destroying or inhibiting specific proteins to enable persistent infection. Starting from a list of known viral targets, we performed a combinatorial screen to identify siRNA cocktails that could desensitize cells to exogenous RNA. We show that combined knockdown of interferon-beta (Ifnb1), Eif2ak2, and Stat2 rescues cells from the innate immune response triggered by frequent long-RNA transfection. Using this technique, we were able to transfect primary human fibroblasts every 24 hours with RNA encoding the reprogramming proteins Oct4, Sox2, Klf4, and Utf1. We provide evidence that the encoded protein is active, and we show that expression can be maintained for many days, through multiple rounds of cell division. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that suppressing innate immunity enables frequent transfection with protein-encoding RNA. This technique represents a versatile tool for investigating expression dynamics and protein interactions by enabling precise control over levels and timing of protein expression. Our finding also opens the door for the development of reprogramming and directed-differentiation methods based on long-RNA transfection

    Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Get PDF
    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection

    Enhancement of Vaccinia Virus Based Oncolysis with Histone Deacetylase Inhibitors

    Get PDF
    Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells

    Antibody Inhibition of a Viral Type 1 Interferon Decoy Receptor Cures a Viral Disease by Restoring Interferon Signaling in the Liver

    Get PDF
    Type 1 interferons (T1-IFNs) play a major role in antiviral defense, but when or how they protect during infections that spread through the lympho-hematogenous route is not known. Orthopoxviruses, including those that produce smallpox and mousepox, spread lympho-hematogenously. They also encode a decoy receptor for T1-IFN, the T1-IFN binding protein (T1-IFNbp), which is essential for virulence. We demonstrate that during mousepox, T1-IFNs protect the liver locally rather than systemically, and that the T1-IFNbp attaches to uninfected cells surrounding infected foci in the liver and the spleen to impair their ability to receive T1-IFN signaling, thus facilitating virus spread. Remarkably, this process can be reversed and mousepox cured late in infection by treating with antibodies that block the biological function of the T1-IFNbp. Thus, our findings provide insights on how T1-IFNs function and are evaded during a viral infection in vivo, and unveil a novel mechanism for antibody-mediated antiviral therapy

    A Method for the Generation of Ectromelia Virus (ECTV) Recombinants: In Vivo Analysis of ECTV vCD30 Deletion Mutants

    Get PDF
    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo

    TRACING THE ORIGIN OF MILK AND MILK PRODUCTS: A SIMPLIFIED PROCEDURE FOR EXTRACTION/ISOLATION OF GLYCEROL FROM WHOLE MILK AND GC-IRMS ANALYSIS

    No full text
    Recently the consumer demand of transparency and attention on foodstuff quality and safety is increasing, and, related to that, the need of qualified origin products on the market (1). Livestock feeding regimen, breeding conditions and growing environment are parameters that need to be traced to reveal origin, not only geographic, in order to certify quality, authenticity, and typicality of diary products. Isotope ratio analysis was demonstrated to be a suitable tool for determining the origin of food, milk and dairy products included (2). It is known that the ratio 13C/12C of animal products is correlated to animal diet since it discriminates between C3 and C4 plants (3), and in particular 13δ of glycerol has been shown to increase with maize amount (4). The possibility to trace OGM presence in the fodder can be speculated on the same hypothesis, since transgenic fodder is mainly made up of soybean, a typical C3 plant. Milk samples from pasture-fed and silagefed cows were collected from the Italian market and analyzed for 13C/12C ratio of glycerol. A sample preparation from whole milk was set up, specifically targeted for GC-IRMS analysis. First, proteins were precipitated, then fat was separated, and through saponification glycerol was released from triglycerides and then isolated from fat components such as fat acids. After derivatization the acetylated mixture was purified in HPLCUV. The purified fraction collected underwent GC-IRMS analysis. When compared to milk from silage-fed cows, milk from pasture-fed cows resulted enriched in 13C, showing a different diet regimen, rich in C4 plants, and therefore suggesting a GMO-free diet. Future developments of the present work will include the investigation of different isotope ratios and other parmeters such as fatty acids compositional profile and screening of milk for exogenous DNA presence. Finally the whole data collected will be processed with chemometric methods
    • …
    corecore