434 research outputs found

    Asymptotics of surface-plasmon redshift saturation at sub-nanometric separations

    Full text link
    Many promising nanophotonics endeavours hinge upon the unique plasmonic properties of nanometallic structures with narrow non-metallic gaps, which support super-concentrated bonding modes that singularly redshift with decreasing separations. In this letter, we present a descriptive physical picture, complemented by elementary asymptotic formulae, of a nonlocal mechanism for plasmon-redshift saturation at subnanometric gap widths. Thus, by considering the electron-charge and field distributions in the close vicinity of the metal-vacuum interface, we show that nonlocality is asymptotically manifested as an effective potential discontinuity. For bonding modes in the near-contact limit, the latter discontinuity is shown to be effectively equivalent to a widening of the gap. As a consequence, the resonance-frequency near-contact asymptotics are a renormalisation of the corresponding local ones. Specifically, the renormalisation furnishes an asymptotic plasmon-frequency lower bound that scales with the 1/41/4-power of the Fermi wavelength. We demonstrate these remarkable features in the prototypical cases of nanowire and nanosphere dimers, showing agreement between our elementary expressions and previously reported numerical computations

    Robustness of the Rabi splitting under nonlocal corrections in plexcitonics

    Get PDF
    We explore theoretically how nonlocal corrections in the description of the metal affect the strong coupling between excitons and plasmons in typical examples where nonlocal effects are anticipated to be strong, namely small metallic nanoparticles, thin metallic nanoshells or dimers with narrow separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalised nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations, the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behaviour can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide analytic solutions based on Mie theory to describe the hybrid modes in the case of matryoshka-like single nanoparticles. Our analysis provides an answer to a so far open question, that of the influence of nonlocality on strong coupling, and is expected to facilitate the design and study of plexcitonic architectures with ultrafine geometrical details

    Nonlocal optical response in metallic nanostructures

    Full text link
    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response

    The impact of nonlocal response on metallo-dielectric multilayers and optical patch antennas

    Get PDF
    We analyze the impact of nonlocality on the waveguide modes of metallo-dielectric multilayers and optical patch antennas, the latter formed from metal strips closely spaced above a metallic plane. We model both the nonlocal effects associated with the conduction electrons of the metal, as well as the previously overlooked response of bound electrons. We show that the fundamental mode of a metal-dielectric-metal waveguide, sometimes called the gap-plasmon, is very sensitive to nonlocality when the insulating, dielectric layers are thinner than 5 nm. We suggest that optical patch antennas, which can easily be fabricated with controlled dielectric spacer layers and can be interrogated using far-field scattering, can enable the measurement of nonlocality in metals with good accuracy

    How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps

    Get PDF
    The nonclassical modification of plasmon-assisted fluorescence enhancement is theoretically explored by placing two-level dipole emitters at the narrow gaps encountered in canonical plasmonic architectures, namely dimers and trimers of different metallic nanoparticles. Through detailed simulations, in comparison with appropriate analytical modelling, it is shown that within classical electrodynamics, and for the reduced separations explored here, fluorescence enhancement factors of the order of 10510^{5} can be achieved, with a divergent behaviour as the particle touching regime is approached. This remarkable prediction is mainly governed by the dramatic increase in excitation rate triggered by the corresponding field enhancement inside the gaps. Nevertheless, once nonclassical corrections are included, the amplification factors decrease by up to two orders of magnitude and a saturation regime for narrower gaps is reached. These nonclassical limitations are demonstrated by simulations based on the generalised nonlocal optical response theory, which accounts in an efficient way not only for nonlocal screening, but also for the enhanced Landau damping near the metal surface. A simple strategy to introduce nonlocal corrections to the analytic solutions is also proposed. It is therefore shown that the nonlocal optical response of the metal imposes more realistic, finite upper bounds to the enhancement feasible with ultrasmall plasmonic cavities, thus providing a theoretical description closer to state of the art experiments
    • …
    corecore