1,224 research outputs found
Collisional invariants for the phonon Boltzmann equation
For the phonon Boltzmann equation with only pair collisions we characterize
the set of all collisional invariants under some mild conditions on the
dispersion relation
A volume-based hydrodynamic approach to sound wave propagation in a monatomic gas
We investigate sound wave propagation in a monatomic gas using a volume-based
hydrodynamic model. In Physica A vol 387(24) (2008) pp6079-6094, a microscopic
volume-based kinetic approach was proposed by analyzing molecular spatial
distributions; this led to a set of hydrodynamic equations incorporating a
mass-density diffusion component. Here we find that these new mass-density
diffusive flux and volume terms mean that our hydrodynamic model, uniquely,
reproduces sound wave phase speed and damping measurements with excellent
agreement over the full range of Knudsen number. In the high Knudsen number
(high frequency) regime, our volume-based model predictions agree with the
plane standing waves observed in the experiments, which existing kinetic and
continuum models have great difficulty in capturing. In that regime, our
results indicate that the "sound waves" presumed in the experiments may be
better thought of as "mass-density waves", rather than the pressure waves of
the continuum regime.Comment: Revised to aid clarification (no changes to presented model); typos
corrected, figures added, paper title change
From the Boltzmann equation to fluid mechanics on a manifold
We apply the Chapman-Enskog procedure to derive hydrodynamic equations on an
arbitrary surface from the Boltzmann equation on the surface
Cauchy problem for the Boltzmann-BGK model near a global Maxwellian
In this paper, we are interested in the Cauchy problem for the Boltzmann-BGK
model for a general class of collision frequencies. We prove that the
Boltzmann-BGK model linearized around a global Maxwellian admits a unique
global smooth solution if the initial perturbation is sufficiently small in a
high order energy norm. We also establish an asymptotic decay estimate and
uniform -stability for nonlinear perturbations.Comment: 26 page
Quantum Kinetic Evolution of Marginal Observables
We develop a rigorous formalism for the description of the evolution of
observables of quantum systems of particles in the mean-field scaling limit.
The corresponding asymptotics of a solution of the initial-value problem of the
dual quantum BBGKY hierarchy is constructed. Moreover, links of the evolution
of marginal observables and the evolution of quantum states described in terms
of a one-particle marginal density operator are established. Such approach
gives the alternative description of the kinetic evolution of quantum
many-particle systems to generally accepted approach on basis of kinetic
equations.Comment: 18 page
Direct simulation for a homogenous gas
A probabilistic analysis of the direct simulation of a homogeneous gas is
given. A hierarchy of equations similar to the BBGKY hierarchy for the reduced
probability densities is derived. By invoking the molecular chaos assumption,
an equation similar to the Boltzmann equation for the single particle
probability density and the corresponding H-theorem is derived
Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation
We present a further theoretical extension to the kinetic theory based
formulation of the lattice Boltzmann method of Shan et al (2006). In addition
to the higher order projection of the equilibrium distribution function and a
sufficiently accurate Gauss-Hermite quadrature in the original formulation, a
new regularization procedure is introduced in this paper. This procedure
ensures a consistent order of accuracy control over the non-equilibrium
contributions in the Galerkin sense. Using this formulation, we construct a
specific lattice Boltzmann model that accurately incorporates up to the third
order hydrodynamic moments. Numerical evidences demonstrate that the extended
model overcomes some major defects existed in the conventionally known lattice
Boltzmann models, so that fluid flows at finite Knudsen number (Kn) can be more
quantitatively simulated. Results from force-driven Poiseuille flow simulations
predict the Knudsen's minimum and the asymptotic behavior of flow flux at large
Kn
Fokker-Planck type equations for a simple gas and for a semi-relativistic Brownian motion from a relativistic kinetic theory
A covariant Fokker-Planck type equation for a simple gas and an equation for
the Brownian motion are derived from a relativistic kinetic theory based on the
Boltzmann equation. For the simple gas the dynamic friction four-vector and the
diffusion tensor are identified and written in terms of integrals which take
into account the collision processes. In the case of Brownian motion, the
Brownian particles are considered as non-relativistic whereas the background
gas behaves as a relativistic gas. A general expression for the
semi-relativistic viscous friction coefficient is obtained and the particular
case of constant differential cross-section is analyzed for which the
non-relativistic and ultra relativistic limiting cases are calculated.Comment: To appear in PR
- …
