A covariant Fokker-Planck type equation for a simple gas and an equation for
the Brownian motion are derived from a relativistic kinetic theory based on the
Boltzmann equation. For the simple gas the dynamic friction four-vector and the
diffusion tensor are identified and written in terms of integrals which take
into account the collision processes. In the case of Brownian motion, the
Brownian particles are considered as non-relativistic whereas the background
gas behaves as a relativistic gas. A general expression for the
semi-relativistic viscous friction coefficient is obtained and the particular
case of constant differential cross-section is analyzed for which the
non-relativistic and ultra relativistic limiting cases are calculated.Comment: To appear in PR