2,433 research outputs found
Mutual information and the F-theorem
Mutual information is used as a purely geometrical regularization of
entanglement entropy applicable to any QFT. A coefficient in the mutual
information between concentric circular entangling surfaces gives a precise
universal prescription for the monotonous quantity in the c-theorem for d=3.
This is in principle computable using any regularization for the entropy, and
in particular is a definition suitable for lattice models. We rederive the
proof of the c-theorem for d=3 in terms of mutual information, and check our
arguments with holographic entanglement entropy, a free scalar field, and an
extensive mutual information model.Comment: 80 pages, 16 figure
Entanglement and alpha entropies for a massive scalar field in two dimensions
We find the analytic expression of the trace of powers of the reduced density
matrix on an interval of length L, for a massive boson field in 1+1 dimensions.
This is given exactly (except for a non universal factor) in terms of a finite
sum of solutions of non linear differential equations of the Painlev\'e V type.
Our method is a generalization of one introduced by Myers and is based on the
explicit calculation of quantities related to the Green function on a plane,
where boundary conditions are imposed on a finite cut. It is shown that the
associated partition function is related to correlators of exponential
operators in the Sine-Gordon model in agreement with a result by Delfino et al.
We also compute the short and long distance leading terms of the entanglement
entropy. We find that the bosonic entropic c-function interpolates between the
Dirac and Majorana fermion ones given in a previous paper. Finally, we study
some universal terms for the entanglement entropy in arbitrary dimensions
which, in the case of free fields, can be expressed in terms of the two
dimensional entropy functions.Comment: 13 pages, 2 figure
Positivity, entanglement entropy, and minimal surfaces
The path integral representation for the Renyi entanglement entropies of
integer index n implies these information measures define operator correlation
functions in QFT. We analyze whether the limit , corresponding
to the entanglement entropy, can also be represented in terms of a path
integral with insertions on the region's boundary, at first order in .
This conjecture has been used in the literature in several occasions, and
specially in an attempt to prove the Ryu-Takayanagi holographic entanglement
entropy formula. We show it leads to conditional positivity of the entropy
correlation matrices, which is equivalent to an infinite series of polynomial
inequalities for the entropies in QFT or the areas of minimal surfaces
representing the entanglement entropy in the AdS-CFT context. We check these
inequalities in several examples. No counterexample is found in the few known
exact results for the entanglement entropy in QFT. The inequalities are also
remarkable satisfied for several classes of minimal surfaces but we find
counterexamples corresponding to more complicated geometries. We develop some
analytic tools to test the inequalities, and as a byproduct, we show that
positivity for the correlation functions is a local property when supplemented
with analyticity. We also review general aspects of positivity for large N
theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of
Wilson loops. Conclusions regarding entanglement entropy unchange
Relative Entropy and Holography
Relative entropy between two states in the same Hilbert space is a
fundamental statistical measure of the distance between these states. Relative
entropy is always positive and increasing with the system size. Interestingly,
for two states which are infinitesimally different to each other, vanishing of
relative entropy gives a powerful equation for the first
order variation of the entanglement entropy and the expectation
value of the \modu Hamiltonian . We evaluate relative entropy between
the vacuum and other states for spherical regions in the AdS/CFT framework. We
check that the relevant equations and inequalities hold for a large class of
states, giving a strong support to the holographic entropy formula. We
elaborate on potential uses of the equation for vacuum
state tomography and obtain modified versions of the Bekenstein bound.Comment: 75 pages, 3 figures, added reference
Analytic results on the geometric entropy for free fields
The trace of integer powers of the local density matrix corresponding to the
vacuum state reduced to a region V can be formally expressed in terms of a
functional integral on a manifold with conical singularities. Recently, some
progress has been made in explicitly evaluating this type of integrals for free
fields. However, finding the associated geometric entropy remained in general a
difficult task involving an analytic continuation in the conical angle. In this
paper, we obtain this analytic continuation explicitly exploiting a relation
between the functional integral formulas and the Chung-Peschel expressions for
the density matrix in terms of correlators. The result is that the entropy is
given in terms of a functional integral in flat Euclidean space with a cut on V
where a specific boundary condition is imposed. As an example we get the exact
entanglement entropies for massive scalar and Dirac free fields in 1+1
dimensions in terms of the solutions of a non linear differential equation of
the Painleve V type.Comment: 7 pages, minor change
Topological phases and topological entropy of two-dimensional systems with finite correlation length
We elucidate the topological features of the entanglement entropy of a region
in two dimensional quantum systems in a topological phase with a finite
correlation length . Firstly, we suggest that simpler reduced quantities,
related to the von Neumann entropy, could be defined to compute the topological
entropy. We use our methods to compute the entanglement entropy for the ground
state wave function of a quantum eight-vertex model in its topological phase,
and show that a finite correlation length adds corrections of the same order as
the topological entropy which come from sharp features of the boundary of the
region under study. We also calculate the topological entropy for the ground
state of the quantum dimer model on a triangular lattice by using a mapping to
a loop model. The topological entropy of the state is determined by loop
configurations with a non-trivial winding number around the region under study.
Finally, we consider extensions of the Kitaev wave function, which incorporate
the effects of electric and magnetic charge fluctuations, and use it to
investigate the stability of the topological phase by calculating the
topological entropy.Comment: 17 pages, 4 figures, published versio
A laboratory investigation on an undisturbed silty sand from a slope prone to landsliding
A laboratory investigation is presented for undisturbed samples of a silty sand under saturated conditions. The soil was sampled from test pits south of Rüdlingen in North–East Switzerland, where a landslide triggering experiment was carried out on a steep forest slope. The aim of the work was to characterise the behaviour of the soil in triaxial tests, in the light of the possible failure mechanisms of the slope. Conventional drained and undrained triaxial tests were conducted to detect critical state conditions as well as peak shear strength as a function of confining pressure. Soil specimens were also exposed to stress paths simulating in situ water pressure increase to study the stress–strain response and to enhance the ability to predict failure conditions more accurately in the future. Possible unstable response along the stress paths analysed was investigated by means of second order work and strain acceleration. The results show that temporary unstable conditions may be encountered for this soil at stress ratios below ultimate failure and even below critical state line, depending on void ratio, drainage conditions and time dependent compressibility. A modified state parameter is explored as a potentially useful tool to discriminate conditions leading to eventual collapse
The size of a Minkowski ellipse that contains the unit ball
In this paper we study the minimum radius of Minkowski ellipses (with antipodal foci on the unit sphere) necessary to contain the unit ball of a (normed or) Minkowski plane. We obtain a general upper bound depending on the modulus of convexity, and in the special case of a so-called symmetric Minkowski plane (a notion that we will recall in the paper) we prove a lower bound, and also we obtain that 3 is the exact upper boun
Density Fluctuations for the Multi-Species Stirring Process
We study the density fluctuations at equilibrium of the multi-species stirring process, a natural multi-type generalization of the symmetric (partial) exclusion process. In the diffusive scaling limit, the resulting process is a system of infinite-dimensional Ornstein-Uhlenbeck processes that are coupled in the noise terms. This shows that at the level of equilibrium fluctuations the species start to interact, even though at the level of the hydrodynamic limit each species diffuses separately. We consider also a generalization to a multi-species stirring process with a linear reaction term arising from species mutation. The general techniques used in the proof are based on the Dynkin martingale approach, combined with duality for the computation of the covariances
- …