152 research outputs found

    Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome

    Get PDF
    Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study

    Freshening rather than warming drives trematode transmission from periwinkles to mussels

    Get PDF
    In the Western Baltic Sea, climate change is happening at much faster rate than in most other seas and organisms are additionally exposed to a steep and variable salinity gradient. Climate change has previously been shown to affect parasite transmission in other marine ecosystems, yet little is known about potential effects of warming and desalination on parasite–host interactions. In laboratory experiments, we determined the combined effects of projected seawater warming and freshening on the emergence, activity, survival, and infectivity of cercariae (free-swimming infectious stage) of the trematode Himasthla elongata (Mehlis 1831), shed from its first intermediate host, the periwinkle Littorina littorea (Linnaeus 1758), in the Baltic Sea. We also assessed the susceptibility of the second intermediate host, the mussel Mytilus edulis Linnaeus, 1758, to cercarial infections. Generally, salinity was the main driver, particularly of cercarial activity, infectivity, and mussel susceptibility to infection. At the lowest salinity (13), cercariae were 50% less active compared to the highest salinity (19). Infection success and host susceptibility followed a similar pattern, with 47% and 43% less metacercariae (encysted stage) present at salinity 13 than at salinity 19, respectively. In contrast, effects of simulated warming were found only for cercarial survival, with cercarial longevity being higher at 19 than at 23 Â°C. No significant interactions between temperature and salinity were found. In contrast to the literature, the results suggest that a climate change-driven freshening (partly also warming) may lead to a general decline of marine trematodes, with possible beneficial effects for the involved hosts

    Relationship between retinal inner nuclear layer, age, and disease activity in progressive MS

    Get PDF
    Objective: To investigate whether inner nuclear layer (INL) thickness as assessed with optical coherence tomography differs between patients with progressive MS (P-MS) according to age and disease activity. Methods: In this retrospective longitudinal analysis, differences in terms of peripapillary retinal nerve fiber layer (pRNFL), ganglion cell layer + inner plexiform layer (GCIPL), INL and T1/T2 lesion volumes (T1LV/T2LV) were assessed between 84 patients with P-MS and 36 sex- and age-matched healthy controls (HCs) and between patients stratified according to age (cut-off: 51 years) and evidence of clinical/MRI activity in the previous 12 months RESULTS: pRNFL and GCIPL thickness were significantly lower in patients with P-MS than in HCs (p = 0.003 and p < 0.0001, respectively). INL was significantly thicker in patients aged < 51 years compared to the older ones and HCs (38.2 vs 36.5 and 36.7 μm; p = 0.038 and p = 0.04, respectively) and in those who presented MRI activity (new T2/gadolinium-enhancing lesions) in the previous 12 months compared to the ones who did not and HCs (39.5 vs 36.4 and 36.7 μm; p = 0.003 and p = 0.008, respectively). Recent MRI activity was significantly predicted by greater INL thickness (Nagelkerke R2 0.36, p = 0.001). Conclusions: INL thickness was higher in younger patients with P-MS with recent MRI activity, a criterion used in previous studies to identify a specific subset of patients with P-MS who best responded to disease-modifying treatment. If this finding is confirmed, we suggest that INL thickness might be a useful tool in stratification of patients with P-MS for current and experimental treatment choice

    Composite MRI measures and short-term disability in patients with clinically isolated syndrome suggestive of MS

    Get PDF
    The use of composite magnetic resonance imaging (MRI) measures has been suggested to better explain disability in patients with multiple sclerosis (MS). However, little is known about the utility of composite scores at the earliest stages of the disease

    A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects

    Get PDF
    Abstract. Measurements of global and diffuse photosynthetically active radiation (PAR) have been carried out on the island of Lampedusa, in the central Mediterranean Sea, since 2002. PAR is derived from observations made with multi-filter rotating shadowband radiometers (MFRSRs) by comparison with a freshly calibrated PAR sensor and by relying on the on-site Langley plots. In this way, a long-term calibrated record covering the period 2002–2016 is obtained and is presented in this work. The monthly mean global PAR peaks in June, with about 160 W m−2, while the diffuse PAR reaches 60 W m−2 in spring or summer. The global PAR displays a clear annual cycle with a semi amplitude of about 52 W m−2. The diffuse PAR annual cycle has a semi amplitude of about 12 W m−2. A simple method to retrieve the cloud-free PAR global and diffuse irradiances in days characterized by partly cloudy conditions has been implemented and applied to the dataset. This method allows retrieval of the cloud-free evolution of PAR and calculation of the cloud radiative effect, CRE, for downwelling PAR. The cloud-free monthly mean global PAR reaches 175 W m−2 in summer, while the diffuse PAR peaks at about 40 W m−2. The cloud radiative effect, CRE, on global and diffuse PAR is calculated as the difference between all-sky and cloud-free measurements. The annual average CRE is about −14.7 W m−2 for the global PAR and +8.1 W m−2 for the diffuse PAR. The smallest CRE is observed in July, due to the high cloud-free condition frequency. Maxima (negative for the global, and positive for the diffuse component) occur in March–April and in October, due to the combination of elevated PAR irradiances and high occurrence of cloudy conditions. Summer clouds appear to be characterized by a low frequency of occurrence, low altitude, and low optical thickness, possibly linked to the peculiar marine boundary layer structure. These properties also contribute to produce small radiative effects on PAR in summer. The cloud radiative effect has been deseasonalized to remove the influence of annual irradiance variations. The monthly mean normalized CRE for global PAR can be well represented by a multi-linear regression with respect to monthly cloud fraction, cloud top pressure, and cloud optical thickness, as determined from satellite MODIS observations. The behaviour of the normalized CRE for diffuse PAR can not be satisfactorily described by a simple multi-linear model with respect to the cloud properties, due to its non-linear dependency, in particular on the cloud optical depth. The analysis suggests that about 77 % of the global PAR interannual variability may be ascribed to cloud variability in winter

    Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis

    Get PDF
    Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the metabolism of inorganic arsenic (iAs). Polymorphisms of AS3MT influence adverse health effects in adults, but little is known about their role in iAs metabolism in pregnant women and infants. The relationships between seven single nucleotide polymorphisms (SNPs) in AS3MT and urinary concentrations of iAs and its methylated metabolites were assessed in mother-infant pairs of the Biomarkers of Exposure to ARsenic (BEAR) cohort. Maternal alleles for five of the seven SNPs (rs7085104, rs3740400, rs3740393, rs3740390, and rs1046778) were associated with urinary concentrations of iAs metabolites, and alleles for one SNP (rs3740393) were associated with birth outcomes/measures. These associations were strongly dependent upon the male sex of the fetus but independent of fetal genotype for AS3MT. These data highlight a potential sex-dependence of the relationships among maternal genotype, iAs metabolism and infant health outcomes

    Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period

    Get PDF
    Sex-based differences in response to adverse prenatal environments and infant outcomes have been observed, yet the underlying mechanisms for this are unclear. The placental epigenome may be a driver of these differences

    Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean

    Get PDF
    Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years 2004–2008, are used to identify the influence of heavy fuel oil (HFO) combustion emissions on aerosol particles in the Central Mediterranean. Aerosol samples influenced by HFO are characterized by elevated Ni and V soluble fraction (about 80% for aerosol from HFO combustion, versus about 40% for crustal particles), high V and Ni to Si ratios, and values of V<sub>sol</sub>>6 ng m<sup>−3</sup>. Evidence of HFO combustion influence is found in 17% of the daily samples. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel region, where an intense ship traffic occurs. This behavior suggests that single fixed sources like refineries are not the main responsible for the elevated V and Ni events, which are probably mainly due to ships emissions. <br><br> V<sub>sol</sub>, Ni<sub>sol</sub>, and non-sea salt SO<sub>4</sub><sup>2−</sup> (nssSO<sub>4</sub><sup>2−</sup>) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO<sub>4</sub><sup>2−</sup>, from the oxidation of SO<sub>2</sub> (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO<sub>3</sub>, pH1.5). <br><br> Data suggest a characteristic nssSO<sub>4</sub><sup>2−</sup>/V ratio in the range 200–400 for HFO combustion aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the HFO contribution to total sulphates is estimated. HFO combustion emissions account, as a summer average, at least for 1.2 μg m<sup>−3</sup>, representing about 30% of the total nssSO<sub>4</sub><sup>2−</sup>, 3.9% of PM<sub>10</sub>, 8% of PM<sub>2.5</sub>, and 11% of PM<sub>1</sub>. Within the used dataset, sulphate from HFO combustion emissions reached the peak value of 6.1 μg m<sup>−3</sup> on 26 June 2008, when it contributed by 47% to nssSO<sub>4</sub><sup>2−</sup>, and by 15% to PM<sub>10</sub>

    Saharan dust aerosol over the central Mediterranean Sea: PM<sub>10</sub> chemical composition and concentration versus optical columnar measurements

    Get PDF
    This study aims to determine the mineral contribution to PM<sub>10</sub> in the central Mediterranean Sea, based on 7 yr of daily PM<sub>10</sub> samplings made on the island of Lampedusa (35.5° N, 12.6° E). <br><br> The chemical composition of the PM<sub>10</sub> samples was determined by ion chromatography for the main ions, and, on selected samples, by particle-induced X-ray emission (PIXE) for the total content of crustal markers. Aerosol optical depth measurements were carried out in parallel to the PM<sub>10</sub> sampling. <br><br> The average PM<sub>10</sub> concentration at Lampedusa over the period June 2004–December 2010 is 31.5 μg m<sup>−3</sup>, with low interannual variability. The annual means are below the EU annual standard for PM<sub>10</sub>, but 9.9% of the total number of daily data exceeds the daily threshold value established by the European Commission for PM (50 μg m<sup>−3</sup>, European Community, EC/30/1999). <br><br> The Saharan dust contribution to PM<sub>10</sub> was derived by calculating the contribution of Al, Si, Fe, Ti, non-sea-salt (nss) Ca, nssNa, and nssK oxides in samples in which PIXE data were available. Cases in which crustal content exceeded the 75th percentile of the crustal oxide content distribution were identified as elevated dust events. Using this threshold, we obtained 175 events. Fifty-five elevated dust events (31.6%) displayed PM<sub>10</sub> higher than 50 μg m<sup>−3</sup>, with dust contributing by 33% on average. <br><br> The crustal contribution to PM<sub>10</sub> has an annual average value of 5.42 μg m<sup>−3</sup>, and reaches a value as high as 67.9 μg m<sup>−3</sup> (corresponding to 49% of PM<sub>10</sub>) during an intense Saharan dust event. <br><br> The crustal content estimated from a single tracer, such as Al or Ca, is in good agreement with the one calculated as the sum of the metal oxides. Conversely, larger crustal contents are derived by applying the EU guidelines for demonstration and subtraction of exceedances in PM<sub>10</sub> levels due to high background of natural aerosol. The crustal aerosol amount and contribution to PM<sub>10</sub> showed a very small seasonal dependence; conversely, the dust columnar burden displays an evident annual cycle, with a strong summer maximum (monthly average aerosol optical depth at 500 nm up to 0.28 in June–August). We found that 71.3% of the dust events identified from optical properties over the atmospheric column display a high dust content at the ground level. Conversely, the remaining 28.7% of cases present a negligible or small impact on the surface aerosol composition due to the transport processes over the Mediterranean Sea, where dust frequently travels above the marine boundary layer, especially in summer. <br><br> Based on backward trajectories, two regions, one in Algeria–Tunisia, and one in Libya, are identified as main source areas for intense dust episodes occurring mainly in autumn and winter. Data on the bulk composition of mineral aerosol arising from these two source areas are scarce; results on characteristic ratios between elements show somewhat higher values of Ca / Al and (Ca + Mg) / Fe (2.5 ± 1.0, and 4.7 ± 2.0, respectively) for Algeria–Tunisia than for Libyan origin (Ca / Al = 1.9 ± 0.7 and (Ca + Mg) / Fe = 3.3 ± 1.1)
    • …
    corecore