4,506 research outputs found
The SL(2,C) Casson invariant for Dehn surgeries on two-bridge knots
We investigate the behavior of the SL(2,C) Casson invariant for 3-manifolds
obtained by Dehn surgery along two-bridge knots. Using the results of Hatcher
and Thurston, and also results of Ohtsuki, we outline how to compute the
Culler--Shalen seminorms, and we illustrate this approach by providing explicit
computations for double twist knots. We then apply the surgery formula of
Curtis to deduce the SL(2,C) Casson invariant for the 3-manifolds obtained by
p/q-Dehn surgery on such knots. These results are applied to prove
nontriviality of the SL(2,C) Casson invariant for nearly all 3-manifolds
obtained by nontrivial Dehn surgery on a hyperbolic two-bridge knot. We relate
the formulas derived to degrees of A-polynomials and use this information to
identify factors of higher multiplicity in the -polynomial, which is
the A-polynomial with multiplicities as defined by Boyer-Zhang.Comment: 32 pages, 2 figures, to be published in Algebraic and Geometric
Topolog
Tunable reflection minima of nanostructured antireflective surfaces
Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application
Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems
The many-body Monte Carlo method is used to evaluate the frequency dependent
conductivity and the average mobility of a system of hopping charges,
electronic or ionic on a one-dimensional chain or channel of finite length. Two
cases are considered: the chain is connected to electrodes and in the other
case the chain is confined giving zero dc conduction. The concentration of
charge is varied using a gate electrode. At low temperatures and with the
presence of an injection barrier, the mobility is an oscillatory function of
density. This is due to the phenomenon of charge density pinning. Mobility
changes occur due to the co-operative pinning and unpinning of the
distribution. At high temperatures, we find that the electron-electron
interaction reduces the mobility monotonically with density, but perhaps not as
much as one might intuitively expect because the path summation favour the
in-phase contributions to the mobility, i.e. the sequential paths in which the
carriers have to wait for the one in front to exit and so on. The carrier
interactions produce a frequency dependent mobility which is of the same order
as the change in the dc mobility with density, i.e. it is a comparably weak
effect. However, when combined with an injection barrier or intrinsic disorder,
the interactions reduce the free volume and amplify disorder by making it
non-local and this can explain the too early onset of frequency dependence in
the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review
Helium ion microscopy and energy selective scanning electron microscopy – two advanced microscopy techniques with complementary applications
Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented
SOME BIRDS OF BILLITON ISLAND
abstract not availabl
AN ACCOUNT OF THE BORNEAN BIRDS IN THE ZOOLOGICAL MUSEUM, BUiTENZORG, WITH THE DESCRIPTION ON A NEW RACE.
abstract not availabl
AN ACCOUNT OF THE SUMATRAN BIRDS IN THE ZOOLOGICAL MUSEUM, BUITENZORG, WITH DESCRIPTIONS OF NINE NEW RACES.
abstract not availabl
THE ARCTICTIS OF JAVA.
abstract not availabl
A NOMINAL LIST OF THE BIRDS COLLECTED IN JAVA
Abstract not availabl
Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment
Marine microorganisms that consume one-carbon (C1) compounds are poorly described, despite their impact on global climate via an influence on aquatic and atmospheric chemistry. This study investigated marine bacterial communities involved in the metabolism of C1 compounds. These communities were of relevance to surface seawater and atmospheric chemistry in the context of a bloom that was dominated by phytoplankton known to produce dimethylsulfoniopropionate. In addition to using 16S rRNA gene fingerprinting and clone libraries to characterize samples taken from a bloom transect in July 2006, seawater samples from the phytoplankton bloom were incubated with 13C-labeled methanol, monomethylamine, dimethylamine, methyl bromide, and dimethyl sulfide to identify microbial populations involved in the turnover of C1 compounds, using DNA stable isotope probing. The [13C]DNA samples from a single time point were characterized and compared using denaturing gradient gel electrophoresis (DGGE), fingerprint cluster analysis, and 16S rRNA gene clone library analysis. Bacterial community DGGE fingerprints from 13C-labeled DNA were distinct from those obtained with the DNA of the nonlabeled community DNA and suggested some overlap in substrate utilization between active methylotroph populations growing on different C1 substrates. Active methylotrophs were affiliated with Methylophaga spp. and several clades of undescribed Gammaproteobacteria that utilized methanol, methylamines (both monomethylamine and dimethylamine), and dimethyl sulfide. rRNA gene sequences corresponding to populations assimilating 13C-labeled methyl bromide and other substrates were associated with members of the Alphaproteobacteria (e.g., the family Rhodobacteraceae), the Cytophaga-Flexibacter-Bacteroides group, and unknown taxa. This study expands the known diversity of marine methylotrophs in surface seawater and provides a comprehensive data set for focused cultivation and metagenomic analyses in the future
- …