45 research outputs found
Low-ILUC-risk rapeseed biodiesel:potential and indirect GHG emission effects in Eastern Romania
Indirect land-use change (ILUC) can have a severe impact on the greenhouse gas (GHG) balance of biofuels. Mitigating ILUC risk is important to avoid additional GHG emissions compared to fossil fuels. This is possible by making surplus land available through land demand reduction and using this for low-ILUC-risk biodiesel production. For a case study in Eastern Romania, we calculated the rapeseed biodiesel potential and the GHG emissions of four measures to make surplus land available in 2020. Four scenarios varying in assumptions on productivity and sustainability in the agricultural sector show the variation in the potential of these measures. We find that using surplus land to produce low-ILUC-risk rapeseed biodiesel has a potential of 3-64 PJ, 1-28% of the projected Romanian transport diesel consumption. The main contribution to this potential comes from yield improvements in crop and livestock production. Average GHG emissions of the ILUC mitigation measures are -11 to 22 g CO2-eq MJ−1 (maximum total lifecycle emissions are 34 g CO2-eq MJ−1; 60% reduction from fossil fuel reference). This means ILUC mitigation is possible without necessarily missing the GHG emission reduction target, provided that the entire agricultural sector is sustainably intensified, going beyond a focus on biofuel production alone
Projecting socio-economic impacts of bioenergy:Current status and limitations of ex-ante quantification methods
The socio-economic effects of bio-energy are not unequivocally positive, although it is one of the main arguments for supporting its expansion. An ex-ante quantification of the impacts is necessary for transparently presenting the benefits and burdens of bioenergy before they occur, and for minimising unwanted outcomes. In this article, the status, limitations, and possibilities for improvements in ex-ante quantitative research methods for investigating socio-economic impacts of bioenergy are mapped. For this, a literature review to identify relevant indicators, analyse the latest quantitative ex-ante research methods, and to assess their ability and suitability to measure these indicators was performed. The spatial aggregation of existing analyses was specifically considered because quantitative information on different spatial scales shows the geographic distribution of the effects. From the 236 indicators of socio-economic impacts spread over twelve impact categories that were found in this review, it becomes evident that there are clear differences in the ex-ante quantification of these indicators. The review shows that some impact categories receive more attention in ex-ante quantification studies, such as project-level economic feasibility and national-level macroeconomic impacts, while other relevant indicators have not been ex-ante quantified, such as community impacts and public acceptance. Moreover, a key blind spot regarding food security impacts was identified in the aggregation level at which food security impacts are quantified, which does not match the level at which the impacts occur. The review also shows that much more can be done in terms of ex-ante quantification of these impacts. Specifically, spatial disaggregation of models and model collaboration can extend the scope of socio-economic analyses. This is demonstrated for food security impacts, which shows the potential for future household-level analysis of food security impacts on all four pillars of food security
Greenhouse gas emission curves for advanced biofuel supply chains
Most climate change mitigation scenarios that are consistent with the 1.5–2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr−1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr−1 for emission factors less than 60 kgCO2e GJBiofuel −1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity
Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region
Agricultural intensification is a key strategy to help meet increasing demand for food and bioenergy. It has the potential to reduce direct and indirect land use change (LUC) and associated environmental impacts while contributing to a favorable economic performance of the agriculture sector. We conduct an integral analysis of environmental and economic impacts of LUC from projected agricultural intensification and bioenergy production in the Orinoquia region in 2030. We compare three agricultural intensification scenarios (low, medium, high) and a reference scenario, which assumes a business-as-usual development of agricultural production. The results show that with current inefficient management or with only very little intensification between 26% and 93% of the existing natural vegetation areas will be converted to agricultural land to meet increasing food demand. This results in the loss of biodiversity by 53% and increased water consumption by 111%. In the medium and high scenarios, the intensification allows meeting increased food demand within current agricultural lands and even generating surplus land which can be used to produce bioenergy crops. This results in the reduction of biodiversity loss by 8-13% with medium and high levels of intensification compared to the situation in 2018. Also, a positive economic performance is observed, stemming primarily from intensification of cattle production and additional energy crop production. Despite increasing irrigation efficiency in more intensive production systems, the water demand for perennial crops and cattle production over the dry season increases significantly, thus sustainable management practices that target efficient water use are needed. Agricultural productivity improvements, particularly for cattle production, are crucial for reducing the pressure on natural areas from increasing demand for both food products and bioenergy. This implies targeted investments in the agricultural sector and integrated planning of land use. Our results showed that production intensification in the Orinoquia region is a mechanism that could reduce the pressure on natural land and its associated environmental and economic impacts
No Evidence of Persisting Unrepaired Nuclear DNA Single Strand Breaks in Distinct Types of Cells in the Brain, Kidney, and Liver of Adult Mice after Continuous Eight-Week 50 Hz Magnetic Field Exposure with Flux Density of 0.1 mT or 1.0 mT
BACKGROUND: It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. METHODS: In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. RESULTS: Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. CONCLUSION: No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT
Controlled reduction of photobleaching in DNA origami gold nanoparticle hybrids
The amount of information obtainable from a fluorescence-based measurement is limited by photobleaching: Irreversible photochemical reactions either render the molecules nonfluorescent or shift their absorption and/or emission spectra outside the working range. Photobleaching is evidenced as a decrease of fluorescence intensity with time, or in the case of single molecule measurements, as an abrupt, single-step interruption of the fluorescence emission that determines the end of the experiment. Reducing photobleaching is central for improving fluorescence (functional) imaging, single molecule tracking, and fluorescence-based biosensors and assays. In this single molecule study, we use DNA self-assembly to produce hybrid nanostructures containing individual fluorophores and gold nanoparticles at a controlled separation distance of 8.5 nm. By changing the nanoparticles? size we are able to systematically increase the mean number of photons emitted by the fluorophores before photobleaching.Fil: Pellegrotti, Jesica Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Acuña, Guillermo. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Puchkova, Anastasiya. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Holzmeister, Phil. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Gietl, Andreas. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Lalkens, Birka. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Tinnefeld, Philip. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; Alemani
Functional food products in Europe=Функциональные продукты питания в Европе
The article presents the results of literature review regarding the functional food products in Europe. The beginning of the twenty-first century is marked with growing and ageing population, thus functional food products will constitute a challenge for Europe's food and agricultural industr
Functional food products in Europe=Функциональные продукты питания в Европе
The article presents the results of literature review regarding the functional food products in Europe. The beginning of the twenty-first century is marked with growing and ageing population, thus functional food products will constitute a challenge for Europe's food and agricultural industr
Low-ILUC-risk ethanol from Hungarian maize
Indirect land use change (ILUC) is a serious threat to the sustainability of bioenergy because of the extra GHG emissions (and other environmental impacts) it causes when feedstock production diverts other agricultural production and causes expansion onto high carbon stock lands. However, multiple measures exist to reduce the risk of ILUC. But these measures and their potential to mitigate ILUC are not yet well understood. Therefore, we assessed the ILUC-mitigation potential under three scenarios for possible developments in agricultural production and supply chains for a case study on maize production in Hungary for ethanol. Our results show that ILUC-risk mitigation is possible in all three scenarios: agricultural land demand is reduced by 3500–16000 km2in 2020 compared to the current situation (6–29% of the agricultural area). This surplus land, is not needed anymore for food and feed production and can be used for biomass production for energy at a low risk of causing ILUC. For example, when maize is cultivated and converted to ethanol, this surplus land can provide 22-138 PJ of ethanol. This is equivalent to 10–60% of the projected 2020 transport energy use in Hungary. Yield improvements of maize, other crops and livestock contributed most (55–90%) to this low-ILUC-risk potential. To sustainably increase productivity and efficiency in the entire agricultural sector, an integrated approach to food and fuel (as well as other non-food) production is needed. Thereby, ILUC risk can be mitigated and is not an irreversible fact as often presented in previous studies