49 research outputs found

    Electron microscopy shows periodic structure in collagen fibril cross sections.

    Full text link

    Paediatric non-progression following grandmother-to-child HIV transmission

    Get PDF
    Background In contrast to adult HIV infection, where slow disease progression is strongly linked to immune control of HIV mediated by protective HLA class I molecules such as HLA-B*81:01, the mechanisms by which a minority of HIV-infected children maintain normal-for-age CD4 counts and remain clinically healthy appear to be HLA class I-independent and are largely unknown. To better understand these mechanisms, we here studied a HIV-infected South African female, who remained a non-progressor throughout childhood. Results Phylogenetic analysis of viral sequences in the HIV-infected family members, together with the history of grand-maternal breast-feeding, indicated that, unusually, the non-progressor child had been infected via grandmother-to-child transmission. Although HLA-B*81:01 was expressed by both grandmother and grand-daughter, autologous virus in each subject encoded an escape mutation L188F within the immunodominant HLA-B*81:01-restricted Gag-specific epitope TL9 (TPQDLNTML, Gag 180–188). Since the transmitted virus can influence paediatric and adult HIV disease progression, we investigated the impact of the L188F mutant on replicative capacity. When this variant was introduced into three distinct HIV clones in vitro, viral replicative capacity was abrogated altogether. However, a virus constructed using the gag sequence of the non-progressor child replicated as efficiently as wildtype virus. Conclusion These findings suggest alternative sequences of events: the transmission of the uncompensated low fitness L188F to both children, potentially contributing to slow progression in both, consistent with previous studies indicating that disease progression in children can be influenced by the replicative capacity of the transmitted virus; or the transmission of fully compensated virus, and slow progression here principally the result of HLA-independent host-specific factors, yet to be defined

    Efficient Production of HIV-1 Virus-Like Particles from a Mammalian Expression Vector Requires the N-Terminal Capsid Domain

    Get PDF
    It is now well accepted that the structural protein Pr55Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development

    The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors

    Get PDF
    Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67¿nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins, however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleatio

    An apparatus for stopped-flow X-ray scattering

    No full text
    A stopped-flow apparatus and control system, designed for the study of rapid reaction kinetics in solution by X-ray scattering, is described. Inspired from a commercial stopped-flow unit used with UV and visible light, the X-ray device has a dead-time of 80 ms. Results are presented for the polymerization of the coat protein of Brome mosaic virus following a pH jump, using a small angle X-ray scattering instrument at Hasylab (Hamburg)

    An apparatus for stopped-flow X-ray scattering

    No full text
    A stopped-flow apparatus and control system, designed for the study of rapid reaction kinetics in solution by X-ray scattering, is described. Inspired from a commercial stopped-flow unit used with UV and visible light, the X-ray device has a dead-time of 80 ms. Results are presented for the polymerization of the coat protein of Brome mosaic virus following a pH jump, using a small angle X-ray scattering instrument at Hasylab (Hamburg).Cet article décrit un appareil de « stopped-flow » et son système de contrôle destiné à l'étude, par diffusion des rayons X, de cinétiques rapides de réactions en solution. Inspiré d'un appareil commercial utilisant les UV et la lumière visible, l'appareil à rayons X a un temps mort de 80 ms. Des résultats sont présentés pour la polymérisation de la protéine de conque du virus de la mosaïque du Brome par saut de pH, en utilisant l'installation de diffusion de rayons X à petits angles de Hasylab (Hambourg)
    corecore