20,733 research outputs found

    Healthy Steps at 15: The Past and Future of an Innovative Preventive Care Model for Young Children

    Get PDF
    Evaluates a model for preventive pediatric care for children up to age 3 that relies on mid-level specialists, including the program's spread, operating costs, funding, challenges, and potential effects of healthcare reform. Includes site profiles

    Reference models for thermospheric NO

    Get PDF
    Nitric oxide has been measured with an ultraviolet spectrometer on the polar-orbiting satellite Solar Mesosphere Explorer (SME) for the period January 1982 to August 1986. The nitric oxide database contains densities at all latitudes sorted into 5 degree bins and at altitudes between 100 and 140 km sorted into 3.3 km-bins. The largest densities occur at latitudes in the auroral zones where the density varies as a function of geomagnetic activity. Variations of a factor of 10 occur between times of intense activity and quiet times. At low latitudes, the nitric oxide density at 110 km varies from a mean value of 3 times 10(exp 7) molecules per cubic cm in January 1982 to a mean value of 4 times 10(exp 6) molecules per cubic cm during solar minimum conditions in 1986. In addition, the low-latitude nitric oxide density varies plus or minus 50 percent with a period of 27 days during times of high solar activity

    No Evidence for [O III] Variability in Mrk 142

    Full text link
    Using archival data from the 2008 Lick AGN Monitoring Project, Zhang & Feng (2016) claimed to find evidence for flux variations in the narrow [O III] emission of the Seyfert 1 galaxy Mrk 142 over a two-month time span. If correct, this would imply a surprisingly compact size for the narrow-line region. We show that the claimed [O III] variations are merely the result of random errors in the overall flux calibration of the spectra. The data do not provide any support for the hypothesis that the [O III] flux was variable during the 2008 monitoring period.Comment: Response to Zhang & Feng 2016, MNRAS Letters, 457, L64 (arXiv:1512.07673). Accepted for publication in MNRAS Letters. 5 pages, 2 figure

    Unambiguous interpretation of atomically resolved force microscopy images of an insulator

    Get PDF
    The (111) surface of CaF 2 was imaged with dynamic mode scanning force microscopy and modeled using atomistic simulation. Both experiment and theory showed a clear triangular contrast pattern in images, and theory demonstrated that the contrast pattern is due to the interaction of a positive electrostatic potential tip with fluorine ions in the two topmost surface layers. We find a good agreement of position and relative height of scan line features between theory and experiment and thus establish for the first time an unambiguous identification of sublattices of an insulator imaged by force microscopy

    Cost analysis of composite fan blade manufacturing processes

    Get PDF
    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    The Carnegie-Irvine Galaxy Survey. V. Statistical study of bars and buckled bars

    Full text link
    Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle (ii), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high ii) or as a barlens structure (at low ii). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70\%--80\%) in late-type disks with low stellar mass (M∗<1010.5 M⊙M_{*} < 10^{10.5}\, M_{\odot}) and high gas mass ratio. In contrast, the buckled bar fraction increases to 80\% toward massive and early-type disks (M∗>1010.5 M⊙M_{*} > 10^{10.5}\, M_{\odot}), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506−-G004) that could provide further clues to understand the timescale of the buckling process.Comment: 9 pages, 7 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Intermediate-mass Black Holes in Galactic Nuclei

    Get PDF
    We present the first homogeneous sample of intermediate-mass black hole candidates in active galactic nuclei. Starting with broad-line active nuclei from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 - 10^6 solar masses. In contrast to the local active galaxy population, the host galaxies are ~1 mag fainter than M* and thus are probably late-type systems. The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the bolometric luminosities are close to the Eddington limit. The spectral properties of the sample are compared to the related class of objects known as narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as observational analogues of primordial black holes, contributors to the integrated signal for future gravitational wave experiments, and as a valuable tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th. Storchi Bergmann, L.C. Ho, H.R. Schmit

    Stellar Velocity Dispersion and Black Hole Mass in the Blazar Markarian 501

    Get PDF
    The recently discovered correlation between black hole mass and stellar velocity dispersion provides a new method to determine the masses of black holes in active galaxies. We have obtained optical spectra of Markarian 501, a nearby gamma-ray blazar with emission extending to TeV energies. The stellar velocity dispersion of the host galaxy, measured from the calcium triplet lines in a 2"x3.7" aperture, is 372 +/- 18 km/s. If Mrk 501 follows the M-sigma correlation defined for local galaxies, then its central black hole has a mass of (0.9-3.4)x10^9 solar masses. This is significantly larger than some previous estimates for the central mass in Mrk 501 that have been based on models for its nonthermal emission. The host galaxy luminosity implies a black hole of 6x10^8 solar masses, but this is not in severe conflict with the mass derived from the M-sigma relation because the M_BH-L_bulge correlation has a large intrinsic scatter. Using the emission-line luminosity to estimate the bolometric luminosity of the central engine, we find that Mrk 501 radiates at an extremely sub-Eddington level of L/L_Edd ~ 10^-4. Further applications of the M-sigma relation to radio-loud active galactic nuclei may be useful for interpreting unified models and understanding the relationship between radio galaxies and BL Lac objects.Comment: To appear in ApJ Letters. 5 pages, 2 figure
    • …
    corecore