1,266 research outputs found

    Broadening of Andreev-Bound States in d_{x^2-y^2} superconductors

    Full text link
    We investigate the broadening of the bound states at an interface of an unconventional superconductor by bulk impurity scattering. We use the quasiclassical theory and include impurity scattering in the Born and in the unitarity limit. The broadening of bound states due to unitary scatterers is shown to be substantially weaker than in the Born limit. We study various model geometries and calculate the temperature dependence of the Josephson critical current in the presence of these impurity-broadened bound states.Comment: 6 page including 7 figures, submitted to Phys. Rev.

    Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond

    Full text link
    We derive the exchange-correlation potential corresponding to the nonlocal van der Waals density functional [M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)]. We use this potential for a self-consistent calculation of the ground state properties of a number of van der Waals complexes as well as crystalline silicon. For the latter, where little or no van der Waals interaction is expected, we find that the results are mostly determined by semilocal exchange and correlation as in standard generalized gradient approximations (GGA), with the fully nonlocal term giving little effect. On the other hand, our results for the van der Waals complexes show that the self-consistency has little effect at equilibrium separations. This finding validates previous calculations with the same functional that treated the fully nonlocal term as a post GGA perturbation. A comparison of our results with wave-function calculations demonstrates the usefulness of our approach. The exchange-correlation potential also allows us to calculate Hellmann-Feynman forces, hence providing the means for efficient geometry relaxations as well as unleashing the potential use of other standard techniques that depend on the self-consistent charge distribution. The nature of the van der Waals bond is discussed in terms of the self-consistent bonding charge.Comment: submitted to Phys. Rev.

    Quasiparticle Interface States in Junctions Involving d-Wave Superconductors

    Full text link
    Influence of surface pair breaking, barrier transmission and phase difference on quasiparticle bound states in junctions with d-wave superconductors is examined. Based on the quasiclassical theory of superconductivity, an approach is developed to handle interface bound states. It is shown in SIS' junctions that low energy bound states get their energies reduced by surface pair breaking, which can be taken into account by introducing an effective order parameter for each superconductor at the junction barrier. More interestingly, for the interface bound states near the continuous spectrum the effect of surface pair breaking may result in a splitting of the bound states. In the tunneling limit this can lead to a square root dependence of a nonequilibrium Josephson current on the barrier transmision, which means an enhancement as compared to the conventional critical current linear in the transmission. Reduced broadening of bound states in NIS junctions due to surface pair breaking is found.Comment: 27 pages, Latex fil

    Inventing Maternity: Politics, Science, and Literature, 1650-1865

    Get PDF
    Not until the eighteenth century was the image of the tender, full-time mother invented. This image retains its power today. Inventing Maternity demonstrates that, despite its association with an increasingly standardized set of values, motherhood remained contested terrain. Drawing on feminist, cultural, and postcolonial theory, Inventing Maternity surveys a wide range of sources--medical texts, political tracts, religious doctrine, poems, novels, slave narratives, conduct books, and cookbooks. The first half of the volume, covering the mid-seventeenth to the late eighteenth centuries, considers central debates about fetal development, pregnancy, breastfeeding, and childbearing. The second half, covering the late eighteenth to the mid-nineteenth centuries, charts a historical shift to the regulation of reproduction as maternity is increasingly associated with infanticide, population control, poverty, and colonial, national, and racial instability. In her introduction, Greenfield provides a historical overview of early modern interpretations of maternity. She concludes with a consideration of their impact on current debates about reproductive rights and technologies, child custody, and the cycles of poverty. Honorable Mention for collaborative work from the Society for Early Modern Women Susan C. Greenfield is associate professor of English at Fordham University. Carol Barash is the author of English Women\u27s Poetry, 1649-1714 and co-editor of Major Women Writers of Seventeenth-Century England. These essays offer fresh and vigorous arguments for the challenges maternal roles present to social values. —Choice It is extremely difficult to capture and convey the complex richness of this volume. Taken together, the constitutive essays offer a historical analysis of the making of modern maternity that is sure to appeal to a wide variety of readers. —Journal of the Association for Research on Mothering Makes a timely and valuable contribution to the current scholarly conversation concerning maternity, reproduction, and the gendered body in which histories of imaginative narrative are profitably understood in conjunction with theories of gender, sexuality, race, and class. —Julia Sternhttps://uknowledge.uky.edu/upk_gender_and_sexuality_studies/1005/thumbnail.jp

    Subharmonic Gap Structure in Superconductor/Ferromagnet/Superconductor Junctions

    Full text link
    The behavior of dc subgap current in magnetic quantum point contact is discussed for the case of low-transparency junction with different tunnel probabilities for spin-up (D↑D_\uparrow) and spin-down (D↓D_\downarrow) electrons. Due to the presence of Andreev bound states ±ϵ0\pm \epsilon_0 in the system the positions of subgap electric current steps eVn=(Δ±ϵ0)/neV_n = (\Delta \pm \epsilon_0)/n are split at temperature T≠0T \neq 0 with respect to the nonmagnetic result eVn=2Δ/neV_n=2\Delta/n. It is found that under the condition D↑≠D↓D_\uparrow \neq D_\downarrow the spin current also manifests subgap structure, but only for odd values of nn. The split steps corresponding to n=1,2n=1,2 in subgap electric and spin currents are analytically calculated and the following steps are described qualitatively.Comment: 4 pages, 1 figure, minor stylistic changes, journal-ref adde

    Combined Paramagnetic and Diamagnetic Response of YBCO

    Full text link
    It has been predicted that the zero frequency density of states of YBCO in the superconducting phase can display interesting anisotropy effects when a magnetic field is applied parallel to the copper-oxide planes, due to the diamagnetic response of the quasi-particles. In this paper we incorporate paramagnetism into the theory and show that it lessens the anisotropy and can even eliminate it altogether. At the same time paramagnetism also changes the scaling with the square root of the magnetic field first deduced by Volovik leading to an experimentally testable prediction. We also map out the analytic structure of the zero frequency density of states as a function of the diamagnetic and paramagnetic energies. At certain critical magnetic field values we predict kinks as we vary the magnetic field. However these probably lie beyond currently accessible field strengths

    Casimir torque

    Full text link
    We develop a formalism for the calculation of the flow of angular momentum carried by the fluctuating electromagnetic field within a cavity bounded by two flat anisotropic materials. By generalizing a procedure employed recently for the calculation of the Casimir force between arbitrary materials, we obtain an expression for the torque between anisotropic plates in terms of their reflection amplitude matrices. We evaluate the torque in 1D for ideal and realistic model materials.Comment: 8 pages, 4 figs, Submitted to Proc. of QFEXT'05, to appear in J. Phys.

    A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle

    Full text link
    In this paper we describe an approach to Casimir Force problems that is ultimately generalizable to all fields, boundary conditions, and cavity geometries. This approach utilizes locally defined reflection amplitudes to express the energy per unit area of any Casimir interaction. To demonstrate this approach we solve a number of Casimir Force problems including the case of uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a typ

    Spectral representation of the Casimir Force Between a Sphere and a Substrate

    Full text link
    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.Comment: 5 page + 4 figures. Submitted to Phys. Rev. Let
    • …
    corecore