4,937 research outputs found

    B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.

    Get PDF
    Dendritic cells comprise a system of highly efficient antigen-presenting cells involved in the initiation of T cell responses. Herein, we investigated the role of the CD28 pathway during alloreactive T cell proliferation induced by dendritic-Langerhans cells (D-Lc) generated by culturing human cord blood CD34+ progenitor cells with granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. In addition to expressing CD80 (B7/BB1), a subset of D-Lc expressed B70/B7-2. Binding of the CTLA4-Ig fusion protein was completely inhibited by a combination of monoclonal antibodies (mAbs) against CD80 and B70/B7-2, indicating the absence of expression of a third ligand for CD28/CTLA-4. It is interesting to note that mAbs against CD86 completely prevented the binding of CTLA4-Ig in the presence of mAbs against CD80 and bound to a B70/B7-2-transfected fibroblast cell line, demonstrating that the B70/B7-2 antigen is identical to CD86. CD28 triggering was essential during D-Lc-induced alloreaction as it was inhibited by mAbs against CD28 (9 out of 11 tested). However, none of six anti-CD80 mAbs demonstrated any activity on the D-Lc-induced alloreaction, though some were previously described as inhibitory in assays using CD80-transfected cell lines. In contrast, a mAb against CD86 (IT-2) was found to suppress the D-Lc-dependent alloreaction by 70%. This inhibitory effect was enhanced to > or = 90% when a combination of anti-CD80 and anti-CD86 mAbs was used. The present results demonstrate that D-Lc express, in addition to CD80, the other ligand for CTLA-4, CD86 (B70/B7-2), which plays a primordial role during D-Lc-induced alloreaction

    Mycophenolate mofetil inhibits lymphocyte binding and the upregulation of adhesion molecules in acute rejection of rat kidney allografts.

    Get PDF
    Mycophenolate mofetil (MMF) interacts with purine metabolism and possibly with the expression of adhesion molecules. In the present study, we analysed the expression of these molecules in transplanted kidney allografts treated with RS LBNF1 kidneys were orthotopically transplanted into Lewis rats and either treated with RS (20 mg/kg/day) or vehicle. Rats were harvested 3, 5 and 7 days following transplantation. For binding studies, fresh-frozen sections of transplanted kidneys were incubated with lymph node lymphocytes (LNL) derived from transplanted rats. Additionally, immunohistology was performed with various monoclonal antibodies. In general, MMF resulted in better preservation of graft structure by 7 days. Cellular infiltration and tubular atrophy were less pronounced. At day 3, macrophages were diminished in MMF-treated animals to a high extent, while the number of T cells was almost identical to that of controls. In addition, the number of cells positive for MHC class II and LFA-1 was reduced in the MMF-treated animals. These findings correlated with the binding results. Three days following engraftment, LNL bound to MMF-treated kidneys to a lesser extent compared to controls. In conclusion, MMF resulted in a markedly reduced leucocytic infiltrate, presumably based on a reduced expression of lymphocytic adhesion molecules and an interaction with macrophages

    Notes on noncommutative supersymmetric gauge theory on the fuzzy supersphere

    Full text link
    In these notes we review Klimcik's construction of noncommutative gauge theory on the fuzzy supersphere. This theory has an exact SUSY gauge symmetry with a finite number of degrees of freedom and thus in principle it is amenable to the methods of matrix models and Monte Carlo numerical simulations. We also write down in this article a novel fuzzy supersymmetric scalar action on the fuzzy supersphere

    Analysis of the total 12C(α,γ)16O cross section based on available angular distributions and other primary data

    Get PDF
    Because a knowledge of the 12C/16O ratio is crucial to the understanding of the later evolution of massive stars, new R- and K-matrix fits have been completed using the available angular distribution data from radiative α capture and elastic α scattering on 12C. Estimates of the total 12C(α,γ)16O rate at stellar energies are reported. In contrast with previous work, the analyses generally involve R- and K-matrix fits directly to the primary data, i.e., the energy- and angle-dependent differential yields, with all relevant partial waves fitted simultaneously (referred to here as surface fits). It is shown that, while the E1 part of the reaction is well constrained by a recent experiment on the β-delayed α-particle decay of 16N, only upper limits can be placed on the E2 ground state cross section factor which we take conservatively as SE2(300)<140 keV b. Simulations were then carried out to explore what kind of new data could lead to better restrictions on SE2(300). We find that improved elastic scattering data may be the best short-term candidate for such restrictions while significantly improving S(300) with new radiative capture data may require a longer-term effort. Theoretical models and estimates from α-transfer reactions for the E2 part of 12C(α,γ)16O are then discussed for comparison with the R- and K-matrix fits of the present work

    Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution

    Full text link
    In this Letter, we prove the unconditional security of single-photon differential phase shift quantum key distribution (DPS-QKD) protocol, based on the conversion to an equivalent entanglement-based protocol. We estimate the upper bound of the phase error rate from the bit error rate, and show that DPS-QKD can generate unconditionally secure key when the bit error rate is not greater than 4.12%. This proof is the first step to the unconditional security proof of coherent state DPS-QKD.Comment: 5 pages, 2 figures; shorten the length, improve clarity, and correct typos; accepted for publication in Physical Review Letter

    Swift Highly Charged Ion Channelling

    Full text link
    We review recent experimental and theoretical progress made in the scope of swift highly charged ion channelling in crystals. The usefulness of such studies is their ability to yield impact parameter information on charge transfer processes, and also on some time related problems. We discuss the cooling and heating phenomena at MeV/u energies, results obtained with decelerated H-like ion beams at GSI and with ions having an excess of electrons at GANIL, the superdensity effect along atomic strings and Resonant Coherent Excitation.Comment: to be published in Journal of Physics

    Fermions on spontaneously generated spherical extra dimensions

    Full text link
    We include fermions to the model proposed in hep-th/0606021, and obtain a renormalizable 4-dimensional SU(N) gauge theory which spontaneously generates fuzzy extra dimensions and behaves like Yang-Mills theory on M^4 \times S^2. We find a truncated tower of fermionic Kaluza-Klein states transforming under the low-energy gauge group, which is found to be either SU(n), or SU(n_1) x SU(n_2) x U(1). The latter case implies a nontrivial U(1) flux on S^2, leading to would-be zero modes for the bifundamental fermions. In the non-chiral case they may pair up to acquire a mass, and the emerging picture is that of mirror fermions. We discuss the possible implementation of a chirality constraint in 6 dimensions, which is nontrivial at the quantum level due to the fuzzy nature of the extra dimensions.Comment: 34 pages. V2: references added, minor corrections V3: discussion added, final versio

    NMR characterization of spin-1/2 alternating antiferromagnetic chains in the high-pressure phase of (VO)2P2O7

    Full text link
    Local-susceptibility measurements via the NMR shifts of 31^{31}P and 51^{51}V nuclei in the high-pressure phase of (VO)2_{2}P2_{2}O7_{7} confirmed the existence of a unique alternating antiferromagnetic chain with a zero-field spin gap of 34 K. The 31^{31}P nuclear spin-lattice relaxation rate scales with the uniform spin susceptibility below about 15 K which shows that the temperature dependence of both the static and dynamical spin susceptibilities becomes identical at temperatures not far below the spin-gap energy.Comment: 6 pages, 5 figures; To be published in J. Phys. Condens. Matte
    corecore