880 research outputs found

    Coexistence of charge density wave and spin-Peierls orders in quarter-filled quasi-one dimensional correlated electron systems

    Full text link
    Charge and spin-Peierls instabilities in quarter-filled (n=1/2) compounds consisting of coupled ladders and/or zig-zag chains are investigated. Hubbard and t-J models including local Holstein and/or Peierls couplings to the lattice are studied by numerical techniques. Next nearest neighbor hopping and magnetic exchange, and short-range Coulomb interactions are also considered. We show that, generically, these systems undergo instabilities towards the formation of Charge Density Waves, Bond Order Waves and (generalized) spin-Peierls modulated structures. Moderate electron-electron and electron-lattice couplings can lead to a coexistence of these three types of orders. In the ladder, a zig-zag pattern is stabilized by the Holstein coupling and the nearest-neighbor Coulomb repulsion. In the case of an isolated chain, bond-centered and site-centered 2k_F and 4k_F modulations are induced by the local Holstein coupling. In addition, we show that, in contrast to the ladders, a small charge ordering in the chains, strongly enhances the spin-Peierls instability. Our results are applied to the NaV_2O_5 compound (trellis lattice) and various phases with coexisting charge disproportionation and spin-Peierls order are proposed and discussed in the context of recent experiments. The role of the long-range Coulomb potential is also outlined.Comment: 10 pages, Revtex, 10 encapsulated figure

    High Energy Hadron-Nucleus Cross Sections and Their Extrapolation to Cosmic Ray Energies

    Get PDF
    Old models of the scattering of composite systems based on the Glauber model of multiple diffraction are applied to hadron-nucleus scattering. We obtain an excellent fit with only two free parameters to the highest energy hadron-nucleus data available. Because of the quality of the fit and the simplicity of the model it is argued that it should continue to be reliable up to the highest cosmic ray energies. Logarithmic extrapolations of proton-proton and proton-antiproton data are used to calculate the proton-air cross sections at very high energy. Finally, it is observed that if the exponential behavior of the proton-antiproton diffraction peak continues into the few TeV energy range it will violate partial wave unitarity. We propose a simple modification that will guarantee unitarity throughout the cosmic ray energy region.Comment: 8 pages, 9 postscript figures. This manuscript replaces a partial manuscript incorrectly submitte

    What do experimental data "say" about growth of hadronic total cross-section?

    Get PDF
    We reanalyse pˉp\bar p p and pppp high energy data of the elastic scattering above s=5\sqrt{s}=5 GeV on the total cross-section σtot\sigma_{tot} and on the forward ρ\rho-ratio for various models of Pomeron, utilizing two methods. The first one is based on analytic amplitudes, the other one relies on assumptions for σtot\sigma_{tot} and on dispersion relation for ρ\rho. We argue that it is not possible, from fitting only existing data for forward scattering, to select a definite asymptotic growth with the energy of σtot\sigma_{tot}. We find equivalent fits to the data together with a logarithmic Pomeron giving a behavior σtotlnγs\sigma_{tot} \propto \ln ^\gamma s, γ[0.5,2.20]\gamma\in [0.5,2.20] and with a supercritical Pomeron giving a behavior σtotsϵ\sigma_{tot} \propto s^\epsilon , ϵ[0.01,0.10]\epsilon\in [0.01,0.10].Comment: LaTeX, 18 pages, 5 eps figures included, to be published in Il Nuovo Ciment

    Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field

    Full text link
    The dynamical spin structure factor and the Raman response are calculated for structurally dimerized and spin-Peierls chains in a magnetic field, using exact diagonalization techniques. In both cases there is a spin liquid phase composed of interacting singlet dimers at small fields h < h_c1, an incommensurate regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation spectra adapts to the applied field, and a fully spin polarized phase above an upper critical field h_c2. For structurally dimerized chains, the spin gap closes in the incommensurate phase, whereas spin-Peierls chains remain gapped. In the spin liquid regimes, the dominant feature of the triplet spectra is a one-magnon bound state, separated from a continuum of states at higher energies. There are also indications of a singlet bound state above the one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure

    Elastic pp Scattering at LHC Energies

    Full text link
    We consider the first LHC data for elastic pp scattering in the framework of Regge theory with multiple Pomeron exchanges. The simplest eikonal approach allows one to describe differential elastic cross sections at LHC, as well as pp and pˉp\bar{p}p scattering at lower collider energies, on a reasonable level.Comment: 11 pages, 5 figures, and 1 tabl

    A Transient New Coherent Condition of Matter: The Signal for New Physics in Hadronic Diffractive Scattering

    Full text link
    We demonstrate the existence of an anomalous structure in the data on the diffractive elastic scattering of hadrons at high energies and small momentum transfer. We analyze five sets of experimental data on p(p)pp(\overline{p})-p scattering from five different experiments with colliding beams, ranging from the first-- and second--generation experiments at s=53\sqrt{s} = 53 GeV to the most recent experiments at 546 GeV and at 1800 GeV. All of the data sets exhibit a localized anomalous structure in momentum transfer. We represent the anomalous behavior by a phenomenological formula. This is based upon the idea that a transient coherent condition of matter occurs in some of the intermediate inelastic states which give rise, via unitarity, to diffractive elastic scattering. The Fourier--Bessel transform into momentum--transfer space of a spatial oscillatory behavior of matter in the impact--parameter plane results in a small piece of the diffractive amplitude which exhibits a localized anomalous behavior near a definite value of t-t . In addition, we emphasize possible signals coming directly from such a new condition of matter that may be present in current experiments on inelastic processes.Comment: 25 pages, LaTeX (12 figures, not included). A complete postscript file (except figures 1 and 11, which are available upon request) is available via anonymous ftp at ttpux2.physik.uni-karlsruhe.de (129.13.102.139) as /ttp94-03 /ttp94-03.ps, Local preprint# TTP94-03 (March 1994

    Phase diagram of a Heisenberg spin-Peierls model with quantum phonons

    Get PDF
    Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a non-zero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, which the model maps to in the anti-adiabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.Comment: RevTeX, 5 pages, 3 eps figures included using epsf. Improved theories in adiabatic and non-adiabatic regimes give better agreement with DMRG. This version accepted in Physical Review Letter

    First Measurement of Proton-Proton Elastic Scattering at RHIC

    Full text link
    The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .Comment: 9 pages 5 figure

    Elastic and quasi-elastic pppp and γp\gamma^\star p scattering in the Dipole Model

    Full text link
    We have in earlier papers presented an extension of Mueller's dipole cascade model, which includes sub-leading effects from energy conservation and running coupling as well as colour suppressed saturation effects from pomeron loops via a ``dipole swing''. The model was applied to describe the total and diffractive cross sections in pppp and γp\gamma^*p collisions, and also the elastic cross section in pppp scattering. In this paper we extend the model to describe the corresponding quasi-elastic cross sections in γp\gamma^*p, namely the exclusive production of vector mesons and deeply virtual compton scattering. Also for these reactions we find a good agrement with measured cross sections. In addition we obtain a reasonable description of the tt-dependence of the elastic pppp and quasi-elastic γp\gamma^\star p cross sections

    Thermodynamics of Spin S = 1/2 Antiferromagnetic Uniform and Alternating-Exchange Heisenberg Chains

    Get PDF
    The magnetic susceptibility chi and specific heat C versus temperature T of the spin-1/2 antiferromagnetic alternating-exchange (J1 and J2) Heisenberg chain are studied for the entire range 0 \leq alpha \leq 1 of the alternation parameter alpha = J2/J1. For the uniform chain (alpha = 1), detailed comparisons of the high-accuracy chi(T) and C(T) Bethe ansatz data of Kluemper and Johnston are made with the asymptotically exact low-T field theory predictions of Lukyanov. QMC simulations and TMRG calculations of chi(alpha,T) are presented. From the low-T TMRG data, the spin gap Delta(alpha)/J1 is extracted for 0.8 \leq alpha \leq 0.995. High accuracy fits to all of the above numerical data are obtained. We examine in detail the theoretical predictions of Bulaevskii for chi(alpha,T) and compare them with our results. Our experimental chi(T) and C(T) data for NaV2O5 single crystals are modeled in detail. The chi(T) data above the spin dimerization temperature Tc = 34 K are not in agreement with the prediction for the uniform Heisenberg chain, but can be explained if there is a moderate ferromagnetic interchain coupling and/or if J changes with T. By fitting the chi(T) data, we obtain Delta(T = 0) = 103(2) K, alternation parameter delta(0) = (1 - alpha)/(1 + alpha) = 0.034(6) and average exchange constant J(0) = 640(80) K. The delta(T) and Delta(T) are derived from the data. A spin pseudogap with a large magnitude \approx 0.4 Delta(0) is consistently found just above Tc, which decreases with increasing T. Analysis of our C(T) data indicates that at Tc, at least 77% of the entropy change due to the transition at Tc and associated order parameter fluctuations arise from the lattice and/or charge degrees of freedom and less than 23% from the spin degrees of freedom.Comment: 53 two-column REVTeX pages, 50 embedded figures, 7 tables. Revisions required due to incorrect Eq. (39) in Ref. 51 which gives the low-T approximation for the specific heat of a S = 1/2 1D system with a spin gap; no conclusions were changed. Additional minor revisions made. Phys. Rev. B (in press
    corecore