270 research outputs found
Open Inflationary Universes in the Induced Gravity Theory
The induced gravity theory is a variant of Jordan--Brans--Dicke theory where
the `dilaton' field possesses a potential. It has the unusual feature that in
the presence of a false vacuum there is a {\em stable} static solution with the
dilaton field displaced from the minimum of its potential, giving perfect de
Sitter expansion. We demonstrate how this solution can be used to implement the
open inflationary universe scenario. The necessary second phase of inflation
after false vacuum decay by bubble nucleation is driven by the dilaton rolling
from the static point to the minimum of its potential. Because the static
solution is stable whilst the false vacuum persists, the required evolution
occurs for a wide range of initial conditions. As the exterior of the bubble is
perfect de Sitter space, there is no problem with fields rolling outside the
bubble, as in one of the related models considered by Linde and Mezhlumian, and
the expansion rates before and after tunnelling may be similar which prevents
problematic high-amplitude super-curvature modes from being generated. Once
normalized to the microwave background anisotropies seen by the COBE satellite,
the viable models form a one-parameter family for each possible .Comment: 7 pages RevTeX file with three figures incorporated (uses RevTeX and
epsf). Also available by e-mailing ARL, or by WWW at
http://star-www.maps.susx.ac.uk/papers/early_papers.htm
Galactic periodicity and the oscillating G model
We consider the model involving the oscillation of the effective
gravitational constant that has been put forward in an attempt to reconcile the
observed periodicity in the galaxy number distribution with the standard
cosmological models. This model involves a highly nonlinear dynamics which we
analyze numerically. We carry out a detailed study of the bound that
nucleosynthesis imposes on this model. The analysis shows that for any assumed
value for (the total energy density) one can fix the value of
(the baryonic energy density) in such a way as to
accommodate the observational constraints coming from the
primordial abundance. In particular, if we impose the inflationary value
the resulting baryonic energy density turns out to be . This result lies in the very narrow range allowed by the observed values of the primordial
abundances of the other light elements. The remaining fraction of
corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for
figures. A more careful study of the model appears in gr-qc/960603
Phase Transition in Conformally Induced Gravity with Torsion
We have considered the quantum behavior of a conformally induced gravity in
the minimal Riemann-Cartan space. The regularized one-loop effective potential
considering the quantum fluctuations of the dilaton and the torsion fields in
the Coleman-Weinberg sector gives a sensible phase transition for an
inflationary phase in De Sitter space. For this effective potential, we have
analyzed the semi-classical equation of motion of the dilaton field in the
slow-rolling regime.Comment: 7pages, no figur
Gravity-Driven Acceleration of the Cosmic Expansion
It is shown here that a dynamical Planck mass can drive the scale factor of
the universe to accelerate. The negative pressure which drives the cosmic
acceleration is identified with the unusual kinetic energy density of the
Planck field. No potential nor cosmological constant is required. This suggests
a purely gravity driven, kinetic inflation. Although the possibility is not
ruled out, the burst of acceleration is often too weak to address the initial
condition problems of cosmology. To illustrate the kinetic acceleration, three
different cosmologies are presented. One such example, that of a bouncing
universe, demonstrates the additional feature of being nonsingular. The
acceleration is also considered in the conformally related Einstein frame in
which the Planck mass is constant.Comment: 23 pages, LaTex, figures available upon request, (revisions include
added references and comment on inflation) CITA-94-1
Scaling solutions in general non-minimal coupling theories
A class of generalized non-minimal coupling theories is investigated, in
search of scaling attractors able to provide an accelerated expansion at the
present time. Solutions are found in the strong coupling regime and when the
coupling function and the potential verify a simple relation. In such cases,
which include power law and exponential functions, the dynamics is independent
of the exact form of the coupling and the potential. The constraint from the
time variability of , however, limits the fraction of energy in the scalar
field to less than 4% of the total energy density, and excludes accelerated
solutions at the present.Comment: 10 pages, 3 figures, accepted for publication in Phys. Rev.
The Constraint of a General Effective Potential in Vector Torsion Coupled Conformally Induced Gravity
It is found that the deviation of an effective potential from the quartic
form is related to the metric and vector torsion dependencies of the effective
potential in the vector torsion coupled conformally induced gravity.Comment: 3pages Revtex 3.0, no figur
Weak-Field Gravity of Revolving Circular Cosmic Strings
A weak-field solution of Einstein's equations is constructed. It is generated
by a circular cosmic string revolving in its plane about the centre of the
circle. (The revolution is introduced to prevent the string from collapsing.)
This solution exhibits a conical singularity, and the corresponding deficit
angle is the same as for a straight string of the same linear energy density,
irrespective of the angular velocity of the string.Comment: 13 pages, LaTe
Cosmological Effects of Radion Oscillations
We show that the redshift of pressureless matter density due to the expansion
of the universe generically induces small oscillations in the stabilized radius
of extra dimensions (the radion field). The frequency of these oscillations is
proportional to the mass of the radion and can have interesting cosmological
consequences. For very low radion masses () these low frequency oscillations lead to oscillations in
the expansion rate of the universe. The occurrence of acceleration periods
could naturally lead to a resolution of the coincidence problem, without need
of dark energy. Even though this scenario for low radion mass is consistent
with several observational tests it has difficulty to meet fifth force
constraints. If viewed as an effective Brans-Dicke theory it predicts
( is the number of extra dimensions), while
experiments on scales larger than imply . By deriving the
generalized Newtonian potential corresponding to a massive toroidally compact
radion we demonstrate that Newtonian gravity is modified only on scales smaller
than . Thus, these constraints do not apply for
(high frequency oscillations) corresponding to scales less than the current
experiments (). Even though these high frequency oscillations can not
resolve the coincidence problem they provide a natural mechanism for dark
matter generation. This type of dark matter has many similarities with the
axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and
some additional references include
WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant
We present observational constraints on a scalar-tensor gravity theory by
test for CMB anisotropy spectrum. We compare the WMAP temperature
power spectrum with the harmonic attractor model, in which the scalar field has
its harmonic effective potential with curvature in the Einstein
conformal frame and the theory relaxes toward Einstein gravity with time. We
found that the present value of the scalar coupling, i.e. the present level of
deviation from Einstein gravity , is bounded to be smaller than
(), and () for . This constraint is much stronger than the bound from the solar
system experiments for large models, i.e., and 0.3 in
and limits, respectively. Furthermore, within the framework
of this model, the variation of the gravitational constant at the recombination
epoch is constrained as , and
.Comment: 7 page
Conformal Couplings in Induced Gravity
It is found that the induced gravity with conformal couplings requires the
conformal invariance in both classical and quantum levels for consistency. This
is also true for the induced gravity with an extended conformal coupling
interacting with torsion.Comment: 10 pages, Revtex3.0, to appear in General Relativity and Gravitatio
- …
