10,356 research outputs found

    Symmetry analysis of the 1+1 dimensional relativistic imperfect fluid dynamics

    Get PDF
    The flow of the relativistic imperfect fluid in two dimensions is discussed. We calculate the symmetry group of the energy-momentum tensor conservation equation in the ultrarelativistic limit. Group-invariant solutions for the incompressible fluid are obtainedComment: 11 pages PS format at http://theor1.ifa.ro/~alexa/iop.p

    Elastic Form Factors of 3,4^{3,4}He up to Large Q2Q^2

    Full text link
    Elastic electron scattering off 3^3He and 4^4He has recently been studied at forward and backward scattering angles in Hall A at JLab. The results will provide accurate data on the elastic form factors, charge and magnetic for 3^3He and charge only for 4^4He, up to squared momentum transfer Q2Q^2-values of 3.2 GeV2^2.Comment: 3 pages, Proceedings of EFB2

    Enhanced heat capacity and a new temperature instability in superfluid He-4 in the presence of a constant heat flux near T-lambda

    Get PDF
    We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very close to the lambda point Tλ, is enhanced by a constant heat flux Q. The heat capacity at constant Q, CQ, is predicted to diverge at a temperature Tc(Q)<Tλ at which superflow becomes unstable. In agreement with previous measurements, we find that dissipation enters our cell at a temperature, TDAS(Q), below the theoretical value, Tc(Q). We argue that TDAS(Q) can be accounted for by a temperature instability at the cell wall, and is therefore distinct from Tc(Q). The excess heat capacity we measure has the predicted scaling behavior as a function of T and Q, but it is much larger than predicted by current theory

    Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    Full text link
    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure
    corecore