2,548 research outputs found

    Long GRBs from binary stars: runaway, Wolf-Rayet progenitors

    Get PDF
    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution; the latter had previously been shown to provide collapsars below a certain metallicity threshold for single stars. The binary channel presented here may provide a means for massive stars to obtain the high rotation rates required to evolve quasi-chemically homogeneous and fulfill the collapsar scenario. Moreover, it suggests that a possibly large fraction of long gamma-ray bursts occurs in runaway stars.Comment: To appear in the proceedings of the conference "Unsolved problems in stellar physics" - Cambridge, July 200

    Infrared Observations During the Secondary Eclipse of HD 209458b: I. 3.6-Micron Occultation Spectroscopy Using the VLT

    Get PDF
    We search for an infrared signature of the transiting extrasolar planet HD 209458b during secondary eclipse. Our method, which we call `occultation spectroscopy,' searches for the disappearance and reappearance of weak spectral features due to the exoplanet as it passes behind the star and later reappears. We argue that at the longest infrared wavelengths, this technique becomes preferable to conventional `transit spectroscopy'. We observed the system in the wing of the strong nu-3 band of methane near 3.6 microns during two secondary eclipses, using the VLT/ISAAC spectrometer at a spectral resolution of 3300. Our analysis, which utilizes a model template spectrum, achieves sufficient precision to expect detection of the spectral structure predicted by an irradiated, low-opacity (cloudless), low-albedo, thermochemical equilibrium model for the exoplanet atmosphere. However, our observations show no evidence for the presence of this spectrum from the exoplanet, with the statistical significance of the non-detection depending on the timing of the secondary eclipse, which depends on the assumed value for the orbital eccentricity. Our results reject certain specific models of the atmosphere of HD 209458b as inconsistent with our observations at the 3-sigma level, given assumptions about the stellar and planetary parameters.Comment: 26 pages, 8 figures Accepted to Astrophysical Journa

    Work extremum principle: Structure and function of quantum heat engines

    Full text link
    We consider a class of quantum heat engines consisting of two subsystems interacting via a unitary transformation and coupled to two separate baths at different temperatures Th>TcT_h > T_c. The purpose of the engine is to extract work due to the temperature difference. Its dynamics is not restricted to the near equilibrium regime. The engine structure is determined by maximizing the extracted work under various constraints. When this maximization is carried out at finite power, the engine dynamics is described by well-defined temperatures and satisfies the local version of the second law. In addition, its efficiency is bounded from below by the Curzon-Ahlborn value 1Tc/Th1-\sqrt{T_c/T_h} and from above by the Carnot value 1(Tc/Th)1-(T_c/T_h). The latter is reached|at finite power|for a macroscopic engine, while the former is achieved in the equilibrium limit ThTcT_h\to T_c. When the work is maximized at a zero power, even a small (few-level) engine extracts work right at the Carnot efficiency.Comment: 16 pages, 5 figure

    Thermodynamic efficiency of information and heat flow

    Full text link
    A basic task of information processing is information transfer (flow). Here we study a pair of Brownian particles each coupled to a thermal bath at temperature T1T_1 and T2T_2, respectively. The information flow in such a system is defined via the time-shifted mutual information. The information flow nullifies at equilibrium, and its efficiency is defined as the ratio of flow over the total entropy production in the system. For a stationary state the information flows from higher to lower temperatures, and its the efficiency is bound from above by max[T1,T2]T1T2\frac{{\rm max}[T_1,T_2]}{|T_1-T_2|}. This upper bound is imposed by the second law and it quantifies the thermodynamic cost for information flow in the present class of systems. It can be reached in the adiabatic situation, where the particles have widely different characteristic times. The efficiency of heat flow|defined as the heat flow over the total amount of dissipated heat|is limited from above by the same factor. There is a complementarity between heat- and information-flow: the setup which is most efficient for the former is the least efficient for the latter and {\it vice versa}. The above bound for the efficiency can be [transiently] overcome in certain non-stationary situations, but the efficiency is still limited from above. We study yet another measure of information-processing [transfer entropy] proposed in literature. Though this measure does not require any thermodynamic cost, the information flow and transfer entropy are shown to be intimately related for stationary states.Comment: 19 pages, 1 figur

    Thermally Induced Fluctuations Below the Onset of Rayleigh-B\'enard Convection

    Full text link
    We report quantitative experimental results for the intensity of noise-induced fluctuations below the critical temperature difference ΔTc\Delta T_c for Rayleigh-B\'enard convection. The structure factor of the fluctuating convection rolls is consistent with the expected rotational invariance of the system. In agreement with predictions based on stochastic hydrodynamic equations, the fluctuation intensity is found to be proportional to 1/ϵ1/\sqrt{-\epsilon} where ϵΔT/ΔTc1\epsilon \equiv \Delta T / \Delta T_c -1. The noise power necessary to explain the measurements agrees with the prediction for thermal noise. (WAC95-1)Comment: 13 pages of text and 4 Figures in a tar-compressed and uuencoded file (using uufiles package). Detailed instructions of unpacking are include

    Boundary Limitation of Wavenumbers in Taylor-Vortex Flow

    Full text link
    We report experimental results for a boundary-mediated wavenumber-adjustment mechanism and for a boundary-limited wavenumber-band of Taylor-vortex flow (TVF). The system consists of fluid contained between two concentric cylinders with the inner one rotating at an angular frequency Ω\Omega. As observed previously, the Eckhaus instability (a bulk instability) is observed and limits the stable wavenumber band when the system is terminated axially by two rigid, non-rotating plates. The band width is then of order ϵ1/2\epsilon^{1/2} at small ϵ\epsilon (ϵΩ/Ωc1\epsilon \equiv \Omega/\Omega_c - 1) and agrees well with calculations based on the equations of motion over a wide ϵ\epsilon-range. When the cylinder axis is vertical and the upper liquid surface is free (i.e. an air-liquid interface), vortices can be generated or expelled at the free surface because there the phase of the structure is only weakly pinned. The band of wavenumbers over which Taylor-vortex flow exists is then more narrow than the stable band limited by the Eckhaus instability. At small ϵ\epsilon the boundary-mediated band-width is linear in ϵ\epsilon. These results are qualitatively consistent with theoretical predictions, but to our knowledge a quantitative calculation for TVF with a free surface does not exist.Comment: 8 pages incl. 9 eps figures bitmap version of Fig

    Square patterns in Rayleigh-Benard convection with rotation about a vertical axis

    Full text link
    We present experimental results for Rayleigh-Benard convection with rotation about a vertical axis at dimensionless rotation rates in the range 0 to 250 and upto 20% above the onset. Critical Rayleigh numbers and wavenumbers agree with predictions of linear stability analysis. For rotation rates greater than 70 and close to onset, the patterns are cellular with local four-fold coordination and differ from the theoretically expected Kuppers-Lortz unstable state. Stable as well as intermittent defect-free square lattices exist over certain parameter ranges. Over other ranges defects dynamically disrupt the lattice but cellular flow and local four-fold coordination is maintained.Comment: ReVTeX, 4 pages, 7 eps figures include

    Rayleigh-B\'{e}nard convection in a homeotropically aligned nematic liquid crystal

    Full text link
    We report experimental results for convection near onset in a thin layer of a homeotropically aligned nematic liquid crystal heated from below as a function of the temperature difference ΔT\Delta T and the applied vertical magnetic field HH and compare them with theoretical calculations. The experiments cover the field range 8 \alt h \equiv H/ H_{F} \alt 80 (HF=H_F = is the Fr\'eedericksz field). For hh less than a codimension-two field hct46h_{ct} \simeq 46 the bifurcation is subcritical and oscillatory, with travelling- and standing-wave transients. Beyond hcth_{ct} the bifurcation is stationary and subcritical until a tricritical field ht=57.2h_t= 57.2 is reached, beyond which it is supercritical. The bifurcation sequence as a function of hh found in the experiment confirms the qualitative aspects of the theoretical predictions. However, the value of hcth_{ct} is about 10% higher than the predicted value and the results for kck_c are systematically below the theory by about 2% at small hh and by as much as 7% near hcth_{ct}. At hcth_{ct}, kck_c is continuous within the experimental resolution whereas the theory indicates a 7% discontinuity. The theoretical tricritical field htth=51h_t^{th} = 51 is somewhat below the experimental one. The fully developed flow above RcR_c for h<hcth < h_{ct} is chaotic. For hct<h<hth_{ct} < h < h_t the subcritical stationary bifurcation also leads to a chaotic state. The chaotic states persist upon reducing the Rayleigh number below RcR_c, i.e. the bifurcation is hysteretic. Above the tricritical field hth_t, we find a bifurcation to a time independent pattern which within our resolution is non-hysteretic.Comment: 15 pages incl. 23 eps figure

    A High Resolution Measurement of the 2.223 MeV Neutron Capture Line in a Solar Flare

    Get PDF
    An intense solar flare lasting 40 s was observed by the HEAO 3 γ-ray spectrometer on 1979 November 9 at 3:05 UT. The flare was observed in four high-resolution germanium detectors as well as in five CsI shield detectors over an energy range of 100 keV to above 5 MeV. Of particular interest is a line feature at 2.2248 ± 0.0010 MeV. The precise energy measurement provides unambiguous evidence that this is the ^1H(n,γ)^2H line resulting from neutron capture on hydrogen. An upper limit of 5 keV is found for the natural line width. The time dependence of the neutron capture line is discussed as well as the overall characteristics of the November 9 flare

    Characteristics of Hospitalized Children With a Diagnosis of Malnutrition

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141004/1/jpen0623-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141004/2/jpen0623.pd
    corecore